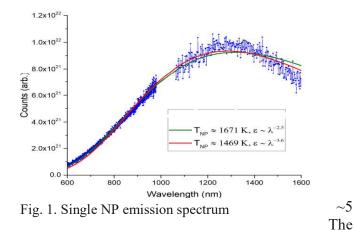
## **Carbon Oxidation Kinetics by Single Nanoparticle Mass Spectrometry**


Scott L. Anderson

Chemistry Department, University of Utah, 315 S. 1400 E., Salt Lake City, UT 8411 anderson@chem.utah.edu

This talk will describe use of single nanoparticle mass spectrometry (NPMS) to measure sublimation and oxidation kinetics of individual laser-heated carbon nanoparticles (NPs) trapped in the gas phase. The goal is to measure the effects of NP heterogeneity on kinetics, specifically the effects of NP-to-NP variations in size, shape, and nanostructure, and the effects of the distribution of surface sites on

*individual NPs*, which evolve with time. In addition, we measure emission spectra for individual NPs over the 400 to 1650 nm range.

In NPMS, a single NP is trapped in an AC quadrupole trap, laser heated to incandescence, and its motion is detected optically. From the motional frequency, it is possible derive the mass M and charge Q of the NP, and since the measurement is nondestructive, kinetics for sublimation, addition reactions, and oxidation can be followed over orders of magnitude by tracking M vs. time.



temperature range is roughly 1400 K to 2500 K. In addition, the number of reactive sites on each individual NP can be measured using a site titration process, providing NP-by-NP correlations between the number of reactive sites and the kinetics. NP temperature (TNP) is determined simultaneously with

kinetics, by measuring the emission spectrum using a pair of array spectrographs. Fig. 1 shows an example single NP emission spectrum acquired in 10 sec, along with fits assuming two simple models for the variation of emissivity with  $\lambda$ . Note that the spectrum shows significantly greater curvature in the IR that either model predicts. Fig. 2 shows an example of kinetics measured with simultaneous TNP determination, in this case for sublimation of a graphite NP with

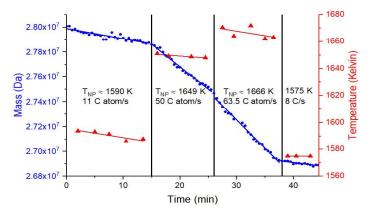



Fig. 2. Sublimation kinetics for a 28 MDa graphite NP

initial mass of 28.007 MDa, heated with a  $CO_2$  laser. During the initial period,  $T_{NP}$  drifted from ~1594 to ~1586 K, and the sublimation rate averaged 11 carbon atoms/sec, or ~4 ppm/sec. When  $T_{NP}$  was raised to ~1649 K, the rate increase to 50 atoms/sec, and raising the temperature to ~1666 K increased the rate to 63.5 atoms/sec, followed by a drop to 8 atoms/sec when  $T_{NP}$  was returned to 1575 K. When automation of the experiment is complete, the laser stability, frequency of  $T_{NP}$  determination, and range of rates that can be studied will increase substantially.