Задача дешевого управления для модели квадрокоптера

В.А. Соболев¹, Е.А. Щепакина¹

 1 Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086

Аннотация. В работе описан достаточно широкий класс задач с дешевой платой за управление. В отличие от существующих в этой области работ, предложено простое решение задачи синтеза оптимального управления с интегральным квадратичным критерием качества. В качестве примера рассмотрена задача управления квадрокоптером.

1. Введение

Задача с дешевой платой за управление обычно ставится для линейных систем вида

$$\dot{x} = A(t)x + B(t)u, x(0) = x_0, x \in \mathbb{R}^n$$
 (1)

с интегральным квадратичным критерием качества
$$J = \frac{1}{2} x^T(1) F x(1) + \frac{1}{2} \int_0^1 (x^T Q x + \mu^2 u^T R u) dt, \tag{2}$$

где μ — малый положительный параметр.

Задача (1), (2) рассмотрена в [1], где показано, что решение этой задачи можно получить с использованием асимптотических разложений по дробным степеням малого параметра $\varepsilon=\mu^{\frac{1}{L}}$ где L можно найти из условия

$$\begin{cases} B_j^T Q B_j = 0, \ j = \overline{0, L - 2} \\ B_{L-1}^T Q B_{L-1} > 0, \end{cases}$$
 где $B_0 = B, B_j = A B_{j-1} - B_{j-1}, j \ge 1.$ (3)

При этом приходится рассматривать задачу в пространстве существенно большей размерности, а именно, n+Lr вместо n. Метод интегральных многообразий [2, 3] для анализа таких задач применялся в [4]. В данной работе показано, что для естественного класса задач можно обойтись без повышения размерности и, более того, без решения дифференциальных уравнений.

2. Конструирование матричного коэффициента усиления

Рассмотрим задачу построения закона управления для векторного дифференциального уравнения второго порядка

$$\ddot{x} + G(t)\dot{x} + N(t)x = B(t)u \tag{4}$$

с интегральным квадратичным критерием качества вида

$$J = \frac{1}{2}x^{T}(t_{f})F_{1}x(t_{f}) + \frac{1}{2}\mu\dot{x}^{T}(t_{f})F_{2}\dot{x}(t_{f}) + \frac{1}{2}\int_{0}^{t_{f}}[x^{T}(t)Q_{1}(t)x(t) + \mu\dot{x}^{T}(t)Q_{2}(t)\dot{x}(t) + \mu^{2}u^{T}(t)R(t)u(t)].$$

Введем новый малый параметр по формуле $\mu = \varepsilon^2$ и перепишем поставленную задачу в форме (1), (2). Соответствующие матрицы примут вид

$$A = \begin{pmatrix} 0 & I \\ -N & -G \end{pmatrix}, A^{T} = \begin{pmatrix} 0 & -N^{T} \\ I & -G^{T} \end{pmatrix},$$

$$Q = \begin{pmatrix} Q_{1} & 0 \\ 0 & \varepsilon^{2} Q_{2} \end{pmatrix}, \tilde{S} = \begin{pmatrix} 0 & 0 \\ 0 & S \end{pmatrix},$$

Закон оптимального управления имеет вид

$$u = -\varepsilon^{-4} R^{-1} (0 \quad B^T) P \begin{pmatrix} \chi \\ \dot{\chi} \end{pmatrix}, \tag{5}$$

$$P = \begin{pmatrix} \varepsilon P_1 & \varepsilon^2 P_2 \\ \varepsilon^2 P_2^T & \varepsilon^3 P_3 \end{pmatrix}$$

удовлетворяет матричному дифференциальному уравнению Риккати

$$\dot{P} + A^T P + PA + Q - \varepsilon^{-4} P \tilde{S} P = 0$$

с граничным условием
$$P(t_f) = \begin{pmatrix} F_1 & 0 \\ 0 & \varepsilon^2 F_2 \end{pmatrix}.$$

Уравнения для блоков имеют вид
$$\varepsilon \dot{P}_1 - \varepsilon^2 (P_2 N + N^T P_2^T) - P_2 S P_2^T + Q_1 = 0,$$
 (6)

$$\varepsilon \dot{P}_2 + P_1 - \varepsilon P_2 G - \varepsilon^2 N^T P_3 - P_2 S P_3 = 0, \tag{7}$$

$$\varepsilon \dot{P}_3 + P_2 + P_2^T - \varepsilon (P_3 G + G^T P_3) + Q_2 - P_3 S P_3 = 0.$$
(8)

с граничным условием

$$\varepsilon P_1(t_f) = F_1, P_2(t_f) = 0, \varepsilon P_3(t_f) = F_2.$$

Положив в (6)-(8) малый параметр равным нулю, получим уравнения

$$-P_2 S P_2^T + Q_1 = 0, (9)$$

$$P_1 - P_2 S P_3 = 0, (10)$$

$$P_2 + P_2^T + Q_2 - P_3 S P_3 = 0. (11)$$

Предположим, что эти уравнения имеют такое решение $P_1=M_1(t)$, $P_2=M_2(t)$, $P_3=M_3(t)$,

что все собственные числа
$$\lambda_i(\varepsilon)$$
 матрицы
$$D = \begin{pmatrix} 0 & I \\ -\varepsilon^{-2} S M_2^T - N & -\varepsilon^{-1} S M_3 \end{pmatrix}$$

имеют отрицательные вещественные части вида $-\frac{\nu(\varepsilon)}{\varepsilon}$, $\nu(0)>0$. Тогда, как показано в [5, стр. 227-230], можно пренебречь граничными условиями, и в качестве решения системы матричных уравнений (6)-(8) взять регулярную часть решения этой системы, которая может рассматриваться как нульмерное интегральное многообразие медленных движений. В стационарном случае роль этого решения играет положительно определенное стационарное решение матричного уравнения Риккати.

Полученные математические результаты приемены авторами для решения задачи оптимального управления квадрокоптером.

3. Благодарности

Исследование выполнено при финансовой поддержке РФФИ и Правительства Самарской области в рамках научного проекта N 16-41-630524.

4. Литература

- [1] O'Malley, R. E. Jr. Cheap control of the time-invariant regulator / R. E. Jr. O'Malley, A. Jameson // Applied mathematics optimization. 1975. Vol. 1(4). P. 337-354.
- [2] Strygin, V.V. Effect of geometric and kinetic parameters and energy dissipation on orientation stability of dual-spin satellites / V.V. Strygin, V.A. Sobolev // Cosmic Research. 1976. Vol. 14(3) P. 331-335.
- [3] Sobolev, V.A. Singular perturbations in linearly quadratic optimal control problems / V.A. Sobolev // Automation and Remote Control. 1991. Vol. 52(2). P. 180-189.
- [4] Smetannikova, E.N. Regularization of cheap periodic control problems / E.N. Smetannikova, V.A. Sobolev // Automation and Remote Control. 2005. Vol. 66(6). P. 903-916.
- [5] Воропаева, Н.В. Геометрическая декомпозиция сингулярно возмущенных систем / Н. В. Воропаева, В. А. Соболев. М: Физматлит, 2009. 256 с.

Cheap Control for Quadrupter

V.A. Sobolev¹, E.A. Shchepakina¹

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086

Abstract. The paper describes a broad class of problems with a cheap control. In contrast to existing works in this field, a simple solution of the problem of synthesis of optimal control with an integral quadratic performance index is proposed. As an example, we consider the quadrupter control problem.

Keywords: feedback control, cheap control, singular perturbations.