Внутренние и внешние возмущения структурированных вихревых пучков

А. Воляр Физико-технический институт Крымского федерального университета им. В.И. Вернадского Симферополь, Россия volyar@singular-optics.org

М. Брецко Физико-технический институт Крымского федерального университета им. В.И. Вернадского Симферополь, Россия mihailbretcko4@gmail.com Е. Абрамочкин Лаборатория когерентной оптики Физического института им. П.Н. Лебедева РАН Самара, Россия ega@fian.smr.ru

Ю. Егоров Физико-технический институт Крымского федерального университета им. В.И. Вернадского Симферополь, Россия yuriy.crimea@gmail.com

Аннотация—В данной работе мы коснемся вопроса внутренних возмущений структурированных ЛГ пучков, вызванных гармонической модуляцией каждой ЭГ моды. Мы покажем, что, хотя возмущение вносится в каждую ЭГ моду, не вызывая связи между ними, в структурированном ЛГ пучке возникает перекрестная связь между модами в ЛГ базисе. При этом, несмотря на возрастание информационной энтропии Шеннона и ОУМ, полный топологический заряд (ТЗ) пучка остается неизменным

Ключевые слова— топологический заряд, структурированные пучки Лагерра-Гаусса, орбитальный и спиновый угловой момент.

1. Введение

Характерной особенностью структурированных вихревых пучков является их способность переносить большие массивы данных за счет присущих им множества степеней свободы [1]: орбитальный (ОУМ) и спиновый угловой момент, а также радиальные квантовые числа вихревых мод [2]. Однако широкое применение структурированных пучков в различных областях нашей жизни [2] обеспечивается специальными устройствами, получивших название пространственные модуляторы света, что позволяет быстро обрабатывать огромные массивы данных [3]. Важнейшим свойством структурированных пучков является их структурная устойчивость к внешним возмущениям [4]. В частности были исследованы частные случаи разрушения и/или самовосстановления структурированных пучков при действии на них возмущений посредством фигурных диафрагм [5-7], а также случайных фазовых возмущений в многомодовых оптических волокнах [8]. В работе [9] мы рассмотрели преобразования тонкой структуры потоков энергии в структурированных пучках Лагерра-Гаусса (ЛГ), связанной с модуляцией мод Эрмита-Гаусса (ЭГ) в их составе. Знакопеременное возмущение ЭГ мод приводит к структурной перестройке критических точек пучка и изменению картины интенсивности, которая

Ю. Акимова

Физико-технический институт

Крымского федерального

университета им. В.И. Вернадского

Симферополь, Россия

yana_akimova_1994@mail.ru

сопровождается переходом между устойчивыми состояниями.

2. ВОЗМУЩЕНИЯ СТРУКТУРИРОВАННЫХ ВИХРЕВЫХ ПУЧКОВ

Вихревой ЛГ пучок с комплексной амплитудой $LG_{n,\ell}$ записывается в базисе ЭГ мод в виде [9]

$$LG_{n,\ell}\left(\mathbf{r} \mid \varepsilon, \theta\right) = \frac{\left(-1\right)^{n}}{2^{2n+3\ell/2}n!} \times \sum_{k=0}^{2n+\ell} \left(-2i\right)^{k} P_{k}^{\left(n+\ell-k,n-k\right)}\left(0\right) \varepsilon_{k}\left(\theta\right) HG_{2n+\ell-k,k}\left(\mathbf{r}\right),$$

$$(1)$$

где $P_k^{(n,\ell)}$ - многочлен Якоби, а $HG_{2n+\ell-k,k}$ - комплексная амплитуда ЭГ моды. В стандартной форме параметр возмущения ε_k равен единице $\varepsilon_k = 1$. Внесем в каждую моду гармоническое возмущение

$$\varepsilon_k = 1 + \varepsilon e^{ik\theta},\tag{2}$$

где є и θ - амплитудный и фазовый управляющие параметры, соответственно, которые превращают стандартную ЛГ моду в структурированный ЛГ пучок, подверженный гармоническому возмущению каждой ЭГ моды.

Рис. 1. Теоретическое (а,г) и экспериментальное (в,е) распределение интенсивности, фазы (б,д) для различных значений ε . (а-в) $\varepsilon = 1$, (г-е) $\varepsilon = 100$ при $\theta \in (0, 3\pi/2)$ для возмущенной $LG_{n-4}^{\ell=4}$ моды

Рис. 2. ОУМ и полный топологический заряд структурированного пучка ЛГ с $\ell = 4; n = 4$ и масштабными параметрами $\varepsilon = 1$, $\varepsilon = 100$, зависящими от параметра θ . Сплошные кружки указывают на разрывы функции ТЗ

Характерное распределение интенсивности и фазы для структурированных ЛГ пучков при двух значениях амплитудного параметра $\varepsilon = 1$ и $\varepsilon = 100$ и различных фазовых параметрах θ представлено на рис. 1. Две группы рис. (а)-(в) и (г)-(е) представляют собой два различных типа структурированных пучков для амплитудных параметров $\varepsilon \leq 1$ и $\varepsilon >> 1$. Действительно, оба типа пучка имеют исходное состояние с $\theta = 0$ в форме LG моды с T3, равным $\ell = 4$, и радиальным числом n = 4. Например, при $\theta = \pi / 2$ первый тип пучка $(\varepsilon = 1, \text{ рис. } 1 \text{ а-в})$ переходит в устойчивое смешанное состояние с регулярной сеткой оптических вихрей в поперечном сечении, в то время как второй тип пучков пучка ($\varepsilon = 100$, рис. 1г-е) превращается в стандартную ЭГ моду, повернутую на угол $\varphi = \pi/4$. При $\theta = \pi$ первый тип пучка образует вырожденное состояние с лучами краевых радиальных дислокаций, а второй тип пучка превращается в стандартную ЛГ моду, но с противоположным знаком ТЗ=-4. Было получено выражение (1) в базисе ЛГ мод

$$LG_{n,\pm\ell}^{(pert)}\left(\mathbf{r} \mid \varepsilon, \theta\right) - LG_{n,\ell}\left(\mathbf{r}\right) = \varepsilon \frac{\pm i^{2\ell-n} e^{\pm i(2n+\ell)\theta/2}}{2^{n+\ell} n!} \times \sum_{k=0}^{2n+\ell} (\mp i)^{k} c_{k}^{(n,n+\ell)} \cdot (-1)^{\min} 2^{\max} \min! LG_{\min,2n+\ell-2k}\left(\mathbf{r}\right),$$
(3)

где min = min $(2n + \ell - k, k)$, max = max $(2n + \ell - k, k)$ и

$$c_{k}^{(n,n+\ell)} = 2^{\max} \min! \sum_{j=\max(0,k-n+\ell)}^{\min(k,n)} (-1)^{k-j} {n \choose j} {n+\ell \choose k-j} \times (\sin\theta/2)^{n+k-2j} (-\cos\theta/2)$$
(4)

Зная амплитуды $c_k^{(n,n+\ell)}$ ЛГ мод в (4) можно рассчитать ОУМ и информационную энтропию Шеннона [5], а, используя методы статьи [10] и выражение (3), можно найти ТЗ структурированного пучка при различных управляющих параметрах ε и θ .

Изменение управляющего параметра θ приводит к перекрестной связи между вторичными ЛГ модами таким образом, что энергия $\left|c_{k}^{(n,n+\ell)}\right|^{2}$ равным образом

ЛГ перераспределяется между модами с противоположными знаками ТЗ при $\varepsilon = 1$ и $\theta = \pi$, в то время как при $\varepsilon >> 1$ ЛГ мода с отрицательным ТЗ подавляет ЛГ моду с положительным ТЗ так, что происходит конверсия знака ТЗ (см. рис.1). На рис.2 приведена зависимость ОУМ $\ell_{z}(\theta)$ от управляющего параметра θ для $\varepsilon = 1$ и $\varepsilon = 100$. Мы видим, что ОУМ обращается в ноль $\ell_z(\theta = \pi, \varepsilon = 1) = 0$, но при $\varepsilon = 100$ ОУМ меняет знак $\ell_{z}(\theta = \pi, \varepsilon = 100) = -4$. При $\varepsilon \le 1$, T3 не изменяется во всем интервале параметра $\theta \in (0, 2\pi)$, но при $\varepsilon = 1$ возникает особая точка с T3=0, что соответствует вырожденному состоянию. В то же время, при $\varepsilon = 100$ наблюдается резкое изменение знака T3=-4 при $\theta = \pi$. Это означает, что при больших значениях амплитудного параметра $\varepsilon >> 1$, сохраняется модуль T3 за исключением единственной $\theta = \pi$ точки с нулевым топологическим зарядом.

3. выводы

В данной работе мы изучили вопрос внутренних возмущений структурированных ЛГ пучков, вызванных гармонической модуляцией каждой ЭГ моды. Мы показали, что, хотя возмущение вносится в каждую ЭГ моду, в структурированном ЛГ пучке возникает перекрестная связь между модами в ЛГ базисе.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке РФФИ (проекты № № 20-37-90068, № 20- 37-90066, № 19-29-01233).

ЛИТЕРАТУРА

- Shen, Yi. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser / Yi. Shen, Xi. Yang, D. Naidoo, X. Fu, A. Forbes // Optica. – 2020. – Vol. 7(7). – P. 820-831.
- [2] Volyar, A. Digital sorting perturbed Laguerre–Gaussian beams by radial numbers / A. Volyar, M. Bretsko, Ya. Akimova, Yu. Egorov // J. Opt. Soc. Ammer. A. – 2020. – Vol. 37(2920). – P. 959-968.
- [3] Forbes, A. Structured light / A. Forbes, M. de Oliveira, M.R. Dennis // Nature Photonic. – 2021. – Vol. 15. – P. 253-262.
- [4] Абрамочкин, Е. Современная оптика гауссовых пучков / Е. Абрамочкин, В. Волостников. – М.: Физматлит, 2010. – 184 с.
- [5] Volyar, A. Orbital angular momentum and informational entropy in perturbed vortex beams / A. Volyar, M. Bretsko, Ya. Akimova, Yu. Egorov // Opt. Lett. – 2019. – Vol. 44(29). – P. 5687-5680.
- [6] Воляр, А.В. Преобразование структурно устойчивых состояний спиральных пучков под действием секторных возмущений / А.В. Воляр, Я.Е. Акимова // Компьютерная оптика. – 2021. – Т. 45, № 6. – С. 789-799. DOI: 10.18287/2412-6179-CO-1009.
- [7] Volyar, A. Digital sorting perturbed Laguerre–Gaussian beams by radial numbers / A. Volyar, E. Abramochkin, M. Bretsko, Ya. Akimova // J. Opt. Soc. Ammer. A. – 2021. – Vol. 38(12). – P. 1793-1802.
- [8] Воляр, А.В. Цифровой анализ спекл картины хаотичной композиции мод и восстановление регулярного узора интенсивности после многомодового волокна / А.В. Воляр, М.В. Брецько, Я.Е. Акимова, Ю.А. Егоров // Компьютерная оптика. – 2021. – Т. 45, № 2. – С. 179-189. DOI: 10.18287/2412-6179-CO-831.
- [9] Volyar, A. Fine structure of perturbed Laguerre–Gaussian beams: Hermite–Gaussian mode spectra and topological charge / A. Volyar, E. Abramochkin, Yu. Egorov, M. Bretsko, Ya. Akimova // Appl Opt. – 2021. – Vol. 59(25). – P. 7680-7687.
- [10] Kotlyar, V. Topological charge of a linear combination of optical vortices: topological competition / V. Kotlyar, A. Kovalev, A. Volyar // Opt Express. – 2020. – Vol. 28(6). – P. 8266-8281.