Влияние показателя преломления на фокусировку лазерного излучения треугольной призмой

В.Д. Зайцев¹, С.С. Стафеев^{1,2}

¹Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086

²Институт систем обработки изображений РАН - филиал ФНИЦ «Кристаллография и фотоника» РАН, Молодогвардейская 151, Самара, Россия, 443001

Аннотация. Моделирование методом конечных элементов (COMSOL Multiphysics) фокусировки ТЕ-поляризованного Гауссова пучка с шириной перетяжки 80 мкм и длиной волны 4 мкм на диэлектрических треугольных призмах показало, что использование титаната бария с шириной основания 60 мкм и высотой 19,04 мкм позволяет получить наиболее оптимальные параметры фокального пятна: максимальная интенсивность в 8 раз превышает интенсивность падающего излучения и ширина по полуспаду интенсивности составляет $0,4\lambda$.

1. Введение

Большое количество работ в современной оптике и нанофотонике посвящены фокусировке излучения [1-4], которая применяется, например, в оптических системах памяти [5], рамановской спектроскопиия [6], наноструктурировании [7], оптическом манипулировании [8], и нанолитографии [9]. Для фокусировки излучения часто используются диэлектрические микросферы, формирующие так называемые наноджеты [10-12]. Например, в [13] для этого предлагается использовать диэлектрические микросферы радиусом 60 мкм. В работе с помощью FDTD метода проводилось исследование сбора излучения с длиной волны 4 мкм такими микросферами в 2D случае. Данные микросферы предлагается использовать в устройствах сбора излучения для улучшения качества изображений, получаемых в ИК-диапазоне. Однако для формирования наноджетов рассматриваются и несферические объекты [14].

В данной работе рассмотрена фокусировка излучения с помощью диэлектрических треугольных призм из разных материалов с разным показателем преломления. Моделирование фокусировки проводилось с помощью метода конечных элементов, реализованного в программном пакете COMSOL Multiphysics. В качестве падающего излучения рассматривался TE-поляризованный Гауссов пучок с шириной перетяжки 80 мкм и длиной волны 4 мкм. Было проведено исследование характеристик фокального пятна, таких как максимальная интенсивность и ширина пятна по полуспаду интенсивности (FWHMx), зависящих от высоты треугольной призмы и материала из которого она сделана при неизменной ширине основания. Была исследована фокусировка света призмами из кварцевого стекла, полистирола и титаната бария и было показано, что треугольная призма из титаната бария с шириной основания 60 мкм и высотой 19,04 мкм позволяет получить наиболее оптимальные параметры пятна:

максимальная интенсивность в 8 раз превышает интенсивность падающего излучения, и ширина по полуспаду интенсивности составляет 0,4*λ*.

2. Фокусировка излучения треугольной призмой

Рассмотрим диэлектрическую треугольную призму со стороной основания 60 мкм. В качестве первого приближения рассчитаем высоту призмы исходя из закона отражения таким образом, чтобы угол у основания призмы θ был близок к углу полного внутреннего отражения для излучения, падающего нормально на основание призмы. Схема моделирования приведена на Рисунке 1.

Рисунок 1. Схема моделирования для треугольной призмы.

С помощью метода конечных элементов, реализованного в пакете COMSOL Multiphysics, проведем моделирование распространения TE-поляризованного излучения с длиной волны 4 мкм через рассматриваемую треугольную призму. В качестве падающей волны возьмем Гауссов пучок с шириной перетяжки 80 мкм. В ходе моделирования здесь и далее воспользуемся нерегулярными сетками с переменным шагом. Так в областях, близких к разделу двух сред используем сетку с мелким шагом $\lambda/40$, в то время как остальную область будем рассчитывать с шагом $\lambda/20$. В процессе исследования будем варьировать высоту треугольной призмы h_{trian} и оценивать максимальную интенсивность I_{max} формируемого фокусного пятна и его ширину по полуспаду интенсивности *FWHMx* для подбора оптимальной высоты призмы. В качестве материалов для призмы рассмотрим кварцевое стекло (n_1 = 1,46), полистирол (n_1 = 1,56) и титанат бария (n_1 = 1,8). Результаты моделирования представлены в таблицах 1-3 и на Рисунках 2-4. Оптимальные параметры фокусных пятен в таблицах отмечены цветом.

Таблица 1. Параметры фокусного пятна для призмы из кварцевого стекла (*n*₁= 1,46).

$h_{ m trian}$, мкм	I _{тах} , отн.ед.	<i>FWHMx</i> , λ	<i>f</i> , мкм	DOF, λ
22,6	8,20	5,63	15,5	0,60
23,4	8,67	5,00	13,1	0,60
24,0	8,87	4,63	11,9	0,58
24, 3	9,01	4,38	11,2	0,50
24,5	9,00	4,25	10,4	0,55
25,4	8,65	3,88	8,6	0,53
26,8	7,73	3,13	5,7	0,20
28,2	6,02	2,50	3,2	0,40
28,5	6,43	2,40	2,8	0,38
29,0	5,85	1,80	0	0,30

$h_{ m trian}$, мкм	I _{max} , отн.ед.	$FWHMx, \lambda$	<i>f</i> , мкм	DOF, λ
17,54	7,66	0,70	23,.7	8,25
20,04	8,04	0,60	14,8	5,25
21,29	8,37	0,55	10,5	4,13
21,79	8,70	0,50	9,25	3,75
22,04	8,77	0,50	8,80	2,38
22,55	8,85	0,47	7,93	3,38
25,05	5,84	0,40	2,79	2,25
25,30	5,86	0,38	2,41	2,08
25,55	5,75	0,38	1,90	1,88
25,80	5,26	0,30	0	1,63
26,03	4,82	0,30	0	1,28

Таблица 2. Параметры фокусного пятна для призмы из полистирола (n_1 = 1,56).

Габлица 3. Парамет	ры фок	усного пятна	для призмы из	з титаната б	ария (n ₁ = 1	1,8).
--------------------	--------	--------------	---------------	--------------	--------------------------	-------

h _{trian} , мкм	I _{тах} , отн.ед.	<i>FWHMx</i> , λ	<i>f</i> , мкм	DOF, λ
15,03	6,08	0,60	16,10	6,00
16,03	8,01	0,54	12,80	4,75
17,03	8,05	0,43	9,40	3,83
17,23	9,02	0,43	9,09	3,83
18,04	6,70	0,40	6,23	2,63
19,04	8,11	0,40	4,80	2,40
19,44	6,50	0,40	3,80	2,15
20,04	5,14	0,38	2,22	1,63
21,04	4,20	0,25	0	1,03

Из таблиц 1-3 видно, что призмы из титаната бария и полистирола дают фокусные пятна с примерно одинаковой максимальной интенсивностью, в 8 раз превышающей интенсивность падающего излучения. При этом, как и ожидалось, применение более высокого коэффициента преломления позволяет получить более компактное пятно (FWHMx = $0,4\lambda$ и DOF = $2,4\lambda$). Следует отметить, что призма из кварцевого стекла проигрывает своим аналогам из других материалов по всем параметрам.

Рисунок 2. Зависимость максимальной интенсивности I_{max} от высоты призмы $h_{\text{trian.}}$

Рисунок 3. Зависимость ширины пятна по полуспаду интенсивности FWHMx от высоты призмы $h_{\text{trian.}}$

Рисунок 4. Зависимость глубины фокуса по полуспаду интенсивности DOF от высоты призмы $h_{\rm trian.}$

3. Заключение

В данной работе рассмотрена фокусировка излучения с помощью диэлектрических треугольных призм из разных материалов с разным коэффициентом преломления. Моделирование фокусировки проводилось с помощью метода конечных элементов, реализованного в программном пакете COMSOL Multiphysics. В качестве падающего излучения рассматривался ТЕ-поляризованный Гауссов пучок с шириной перетяжки 80 мкм и длиной волны 4 мкм. Было проведено исследование характеристик фокального пятна, таких как максимальная интенсивность и ширина пятна по полуспаду интенсивности (FWHMx), зависящих от высоты треугольной призмы и материала из которого она сделана при неизменной ширине основания. Показано, что треугольная призма из титаната бария с шириной основания 60 мкм и высотой 19,04 мкм позволяет получить наиболее оптимальные параметры фокального пятна: максимальная интенсивность в 8 раз превышает интенсивность падающего излучения и ширина по полуспаду интенсивность падающего

4. Литература

- Geints, Yu.E. Modeling spatially localized photonic nanojets from phase diffraction gratings / Yu.E. Geints, A.A. Zemlyanov // J. Appl. Phys. – 2016. – Vol. 119. – P. 15391.
- [2] Mahariq, I. Persistence of photonic nanojet formation under the deformation of circular boundary / I. Mahariq, V.N. Astratov, H. Kurt // J. Opt. Soc. Am. B. – 2016. – Vol. 33(4). – P. 535-542.

- [3] Дегтярев, С.А. Трёхмерный расчёт фокусировки лазерного излучения коническим диэлектрическим зондом / С. А. Дегтярев // Компьютерная оптика. 2016. Т. 40, № 4. С. 588-593. DOI: 10.18287/2412-6179-2016-40-4-588-593.
- [4] Kozlova, E.S. Modeling the resonance focusing of a picosecond laser pulse using a dielectric microcylinder / E.S. Kozlova, V.V. Kotlyar, S.A. Degtyarev // J. Opt. Soc. Am. B. – 2015. – Vol. 32(11). – P. 2352-2357.
- [5] Li, X. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate / X. Li, Y. Cao, N. Tian, L. Fu, M. Gu // Optica. – 2015. – Vol. 2(6). – P. 567-570.
- Yi, K.J. Enhanced Raman scattering by self-assembled silica spherical microparticles / K.J. Yi, H. Wang, Y.F. Lu, Z.Y. Yang // J. Appl. Phys. – 2007. – Vol.101. – P. 063528.
- Bhuyan, M.K. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams / M.K. Bhuyan, P.K. Velpula, J.P. Colombier, T. Olivier, N. Faure, R. Stoian // Appl. Phys. Lett. 2014. Vol.104. P. 021107.
- [8] Li, Y.-C. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet / Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, B.-J. Li // Science and Applications. – 2016. – Vol. 5. – P. e16176.
- McLeod, E. Subwavelength direct-write nanopatterning using optically trapped microspheres / E. McLeod, C.B. Arnold // Nature Nano. 2008. Vol. 3. P. 413-417.
- [10] Liu, C.-Y. Real-space observation of photonic nanojet in dielectric microspheres / C.-Y. Liu, Y.-H. Wang // Physica E. 2014. Vol. 61. P. 141-147.
- [11] Козлов, Д.А. Резонансная острая фокусировка света диэлектрическим цилиндром с квадратным сечением и кубом / Д.А. Козлов, Е.С. Козлова, В.В. Котляр // Компьютерная оптика. 2016. Т. 40, № 4. С. 431-438. DOI: 10.18287/2412-6179-2016-40-4-431-438.
- [12] Wu, M. Creation of a longitudinally polarized photonic nanojet via an engineered microsphere / M. Wu, R. Chen, J. Ling, Z. Chen, X. Chen, R. Ji, M. Hong // Opt. Lett. – 2017. – Vol. 42(7). – P. 1444-1447.
- [13] Abolmaali, F. Photonic jets for highly efficient mid-IR focal plane arrays with large angle-of-view / F. Abolmaali, A. Brettin, A. Green, N.I. Limberopoulos, A.M. Urbas, V.N. Astratov // Opt. Express. – 2017. – Vol. 25(25). – P. 31174-31185.
- [14] Liu, C.-Y. Photonic nanojet shaping of dielectric non-spherical microparticles / C.-Y. Liu // Physica E. 2014. Vol .64. P. 23-28.

Благодарности

Работа выполнена при поддержке Российского научного фонда (грант 18-19-00595).

The effect of refractive index on focusing with a triangular prism

V.D. Zaitsev¹, S.S. Stafeev^{1,2}

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086 ²Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardejskaya street 151, Samara, Russia, 443001

Abstract. The finite element modeling (COMSOL Multiphysics) of focusing a TE-polarized Gaussian beam with a waist of 80 μ m and a wavelength of 4 μ m on dielectric triangular prisms showed that the use of barium titanate with a base of 60 μ m and a height of 19.04 μ m provides the most optimal parameters focal spot: the maximum intensity is 8 times the intensity of the incident radiation and the full width of half-maximum of the intensity is 0.4 λ .