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Abstract. The propagation of a plane electromagnetic wave in a plane inhomogeneous chiral
medium with oblique incidence is considered. A solution of the ordinary differential equations
system 4x4 was obtained by the Wentzel-Kramers—Brillouin method in the form of a Cauchy
matrix. The dependence of the cross-polarized components on the reflection from the profile of
the chirality parameter and the angle of incidence is shown.
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1. Introduction

Interest in chiral media is called problem solving nanophotonics: superresolution effect, overcoming
the diffraction limit [1]. The first work on chiral media studied the optical activity of quartz [2]. The
first artificial material possessing the chirality property was described in the work of Lindman [3] in
1920. Interest in chiral media has increased significantly after the release of [4]. It was investigated by
the method of integral equations of scattering of electromagnetic waves on asymmetric spheroid
objects. Fresnel [5] as the basis used two waves with different phase velocities right and left circular
polarization (RCP and LCP). Such a representation is a traditional [6] and is found in the works of
various researchers. The problem of propagation of electromagnetic waves in the chiral medium is
reduced to a system of four ordinary differential equations (ODE), which explains the interaction
between waves of different polarizations. Dissemination of TE wave in a chiral medium leads to the
appearance of TH waves and vice versa. Upon reflection of each of the waves on the border there are
two waves: TH and TE, or s- and p- polarization. The waves RCP and LCP in the medium and the
reflection from the interfaces interact. Basic solutions for a chiral medium should be chosen so that
they are linearly independent. Therefore, as a basic wave chiral medium is advisable to choose the
eigenvectors of the system of ODE corresponding to the eigenvalues. Were found waves with
elliptical polarization, and not interacting. They are conveniently used as the base. Each resulting basic
solution corresponds to one of four eigenvalues ODE.

2. Equations

Consider the oblique incidence of a plane electromagnetic wave (EMW) on a planar inhomogeneous
chiral layer, shown in Figure 1a. The light falls at an angle 6, , is reflected at an angle 6, , refracted
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and propagates further in the layer at an angle 6, (z) , that depends on the z coordinate. In deriving the
matrix of the solution for the layer, we use the material equations of the chiral medium [7]:
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Figure 1. The plane of EMW incidence on the inhomogeneous chiral layer.
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Figure 2. The profile of the function x(z): a) by formula (2.a), b) by formula (2.b).

From Snell's law it follows that /e, sin®, =(,/s(z)ix)sin6t(z)=J;nsinen. We introduce the

notation: o = J;lsin 0, . We consider two cases: the first, when the chirality of the medium depends
linearly on the coordinate z

X(Z)=Z%' (2.2)
and the second, when the chirality has the form of a function:
X 21
z)="Ccos| =z |. 2.b
u(2)=% ( ; j (2)

The values X, correspond to the graphs shown in Figure 2. A system of four ODEs for an
inhomogeneous chiral layer with allowance for (1) in Cartesian coordinates has the form:

(;jzcj —ik,AQ. (3.2)
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Here k, = i—n is the wave number, and A, - is the wavelength. So an expression for the matrix A
0

is:

0 —u 0 Fiy

2 2
—(g— % Zj 0 iix(1+ = 2) 0

A eu—y It

A= 0 Fiy 0 e | (3.0)

2 2
iix[1+ - 2) 0o pu-"_ 0

=y eL— 1,

It describes the process of changing the projection of waves propagating in the chiral layer. We
write it more briefly:

0 -b 0 ¢

~ |-c 0 p O

A= 0 q 0 el (4.9)
p 0 f O

Or in the form of four blocks - submatrices:

~ (A B

A-lA B (4.0)
B Ap

The matrix blocks A, A, B have dimension dimA =dimA =dimB=2. Submatrix A
describes the change in the medium of a wave component having s-polarization (TE), Ap- is the

change in the p-polarization component (TM), and, B - describes the interaction of s- and p-
polarizations.

The vector Q is made up of the projections of the fields E and H: Q=(E, H, H, EX)T_
To find the matrix solution, we find the eigenvalues and eigenfunctions of the matrix A. The
eigenvalues are solutions of the characteristic equation det(A—kf):O and are calculated by

X

formulas:
1 2
A, =iﬁ\/bc+ef +2pq—\/(bc—ef) —4bp(ep—cq)+4fa(ep—cq), (5.a)
Aay =ii\/bc+ef +2pq+\/(bc—ef )2 —4bp(ep—cq)+4fg(ep—cq). (5.b)
Y2

Since we start from the material equations (1), the following equalities hold: bc=ef ,
ep—cq==2igy, fq—bp=7F2iuy, so the form of the eigenvalues (5.a) —(5.b) is essentially simplified
and, according to [8], reduces to the form:

Ay, = (\/a—x)z —-a?, (6.2)
My =(Ven ) —o. (6.b)

The basic functions for  Wentzel-Kramers—Brillouin  approximation (WKB) as
S, exp[ikojki (&)d&] define the fundamental matrix of the solution (FMS) \f(z), as was shown in
0

W. Wazov's book [9]:
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Y ()= F(z)diag [exp(ikoikl(i)déj,...., exp[ikoix4(g)d§)J. 7)

To find the FMS, we first write down the components of the fields E, and H,:

ikojxl(z;)dg ikojxl(g)dg

E,=Se ¢ +Se ° , (8)
ikojks(é)d& ikojk‘,(&)dg

H, =Se °© +5, ° . 9)

From the first and third equations of the system (2) with allowance for the matrix (3), we obtain the
relations between the projections of the fields of the EMW:

ikojxl(é)dg ikojkz(é)dg

qE, —bH, =A,Se ° -A,5,e ° , (10)
ikoj'xs(g)dg ikoij(a)dg

eE, +qH, =A,S,e ° -A,S.e °

We solve the system (10) using the Cramer rule. The determinant of the matrix of system (10) in
the plane z=const:

A=eb+q*=en—y’(z), (11)
Determinants A, and A, :

ikojz.kl(é)dé_, —ikoj.kl(z';)dé_, ikoj)ﬁ(é)dé —ikoj.XS(i)dé
A=A\l Se © -S,e ° +Ab| S;e o -Sge ° (12)
ikofxl(a)da —ikofxl(a)da ikojxa(a)da —ikofxs(&)d&
A, =-\ge| Se ° -S,e 0 +Aq| S,e ° -S,e ° (13)
A
E.=—1, (14.9)
eu—x
A
Ho=—%. (14.b)
en—y
We write down all the projections of the fields in the FMS lines:
ikojxl(g)dg —ikojkl(g)di
Se ° Se o 0 0
_ ikojkl(g)dé 7ik0jx1(g)da, ikojxg(g)dg —ikoj),3(§)d§
eklz Se ¢ e, 79,8 0 Gy ;58 ° __ P ;98 °
Y(Z)= eu—X eu—X eu—X . ep—X . (15)
iy [ 14(E)ae ik, [25(2)d2
0 0 Se Se °
o (€)6e i (€10 o ()5 iy (0
oy ;S8 ° _ W ;58 ° s ;58 ° _ P ;58 7
eu—X eu—x eu—X eu—x

The values of A; and y in the matrix Y(z) are determined in an arbitrary plane z=const inside, or
on any boundary layer with an applicator z. The Cauchy matrix is calculated from the found FMS:

N (z,0)=Y (z)Y *(0). (16)

The matrix \f*l(o) - is the inverse of the FMS matrix written on the boundary z=0. The Cauchy
matrix (16) makes it possible to stitch the boundary conditions in a matrix form. From the continuity
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conditions for the tangential components of the fields E and H at the interfaces of the media, we
obtain a system connecting the s- and p- components of the incident and reflected waves:

[ p, (N + Py ) — (N + PNy, ) \/gl(pn (M + 0Ny ) = (N + 0y, ) J[ E, j _

Je (0, (N + ping ) — (N + o, )) - ee, (0 (g + 60y, ) — (ngg + iy, ))

:[ ~(po (Mg = i) = (N = pnyy)) = ey (P (M = AN ) = (N — G )) ](Eer
_\/;n(qn (Mg = iy, ) + (g, - p1n42)) _\/a(qn (N = G5, ) = (N =GNy, ))

Where n; - are the elements of the Cauchy matrix. The matrix equation (17) can be briefly written

E,

17

E. )

in the form:
Sy S12j[ Eg j = (un Uy, j[ E ) 18
(SZI S22 Epi u21 u22 Epr l ( )

Then the matrix of reflection coefficients for s- and p-polarization waves has the form:

a_(Re Rg)_ L ( U, —uuj(sn sj (19)
RpS Rpp AU _uzl u11 S21 822

Upon reflection from the chiral medium, the polarization of light changes: if a wave of s
polarization falls on the layer, then the reflected wave will have an s and p component. Analogous
transformations occur when a p wave is incident on the chiral layer.

3. Calculation of the reflection matrix at the boundary of the inhomogeneous chiral layer
Let us find out whether the value of the chirality parameter and its inhomogeneous medium profile
affect the absolute values of the matrix coefficients (19). Consider an artificial medium of thickness

d =5A,, in which € =2, y varies, according to (2a), a X, a takes on the values X, =0,05, 0,10, ...,
0,40, g, =1.7782. The results of the calculations are presented in Figures 3 u 4. As X, increases,

the growth of R_| and ‘Rps a increases for |R| and ‘Rpp‘ the interference in the layer increases.
IR, R,
1,0 1,0 7]

Figure 3. Modules of reflection coefficients a) Ry, b) Ry for X(z) calculated by formula (2a).

For comparison, we considered a layer with the same parameters, d =54, but the profile of x(z) :
had the form (2b). The modules of the coefficients of the matrix R were calculated. The results are

shown in Figure 5(a-b) and Figure 6(a-b). Similarly, as X, increases R | and ‘Rps increases for \R

ss‘

and ‘Rpp‘ increases the interference in the layer. If the value of X, increases, then the values of

Ry,

and ‘Rps‘ increase. According to the graphs of \Rss\ and ‘Rpp , It is seen that under these conditions

interference in the layer increases.
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Figure 4. Modules of reflection coefficients a) Ry, b) Ry, for x(z) calculated by formula (2a).
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Figure 5. Absolute values of the reflection coefficients a) Ry, b) Ry for x(z) calculated by formula
(2b).
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Figure 6. Absolute values of the reflection coefficients a) Ry, b) Ry, for x(z) varying by the formula
(2b).

In the present paper, we obtain a matrix solution for an inhomogeneous chiral layer, which makes it
possible to calculate the field vectors of the EMW in the medium, as well as the reflection matrices. It
is shown that the maximum value and the profile of the chirality parameter determine the cross-
polarization of the EMW under reflection. The resulting mathematical apparatus will allow to design
new polarization devices, optical switches.
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