
TEMPLET: A MARKUP LANGUAGE FOR CONCURRENT

PROGRAMMING

S.V. Vostokin
Samara State Aerospace University, Samara, Russia

The article presents a markup domain-specific language (DSL) for concurrent programming. Runtime libraries

and language extensions are the usual ways to implement parallel execution. However, their using often require

a special programming skills. The modern languages with build-in parallel constructs are more convenient for

programming, but they are poorly integrated with existing high performance computing infrastructure. We pro-

pose a compromise solution which uses DSL together with C++ programming language. The article discusses

syntax, programming model, and some practical applications of the language.

Keywords: domain-specific language; parallel programming; actor model; language-oriented programming;

skeleton programming.

Introduction

The Templet language is a domain-specific language (DSL). It is designed to be used together

with a sequential procedural or an object-oriented programming language. The new property of

the language is an implicit specification of the actor's computation semantics with a marked se-

rial code. The language detailed description first appeared as arXiv preprint [1].

The article focuses on a design of the markup language. The design concepts of the language

basically follow the concept of the language-oriented programming [2,3]. The algebraic-like

notation similar to the CSP formalism was applied to describe parallel processes and interac-

tions [4]. The idea of a minimalistic design with emphasis on the basic abstractions is taken

from the programming language Oberon [5].

The language design is based on the three concepts. The first one is so called active markup.

Usually a markup is read form the source file and produces some effects in the target file (e.g.

adding synchronization and/or communication commands). In our approach source and target is

the same file. The language preprocessor overwrite files content. The markup inside the files

directs the conversion to keep a desired code structure.

The second one is a programming model. We introduce a diffusive (with no locking) program-

ming model that describes concurrent activity as a message exchange between parallel process-

es. They are activated by incoming messages. The channels defines message exchange proto-

cols. The model avoids concurrent data access, hence it is easier to use when multithreading.

The model is a specialization of the actor formalism [6].

The third concept is based on description of concurrent activity with sequential code. This

method is derived from a formal theories that consider parallel process as set of behaviors (se-

quences of system states and/or atomic actions). We simulate such a sequences with random

number generator.

The following paragraphs illustrate these concepts with Templet syntax and code examples.

The article ends with an overview of related works. The experimental preprocessor for the

Templet language and code samples in marked C++ are available at http://github.com/templet-

language.

Информационные технологии и нанотехнологии-2016

928

Active markup

To describe the syntax, an extended Backus-Naur Formalism called EBNF is used. The follow-

ing EBNF rules describe the block structure of a module. The module here is a unit of code that

can include one or several files.
module = {base-language|user-block} module-scheme

 {base-language|user-block}.

user-block = user-prefix base-language

 user-postfix.

module-scheme = scheme-prefix

 { channel | process } scheme-postfix.

The code of a module consists of the single module scheme section and multiple code sections

in C++ language with highlighted user blocks. These sections are distinguished from the rest of

the code by means of C++ comments. For example, the marked C++ code may look as follows.

The blocks’ names according to the markup language syntax are shown on the right side.
#include <runtime.h> <-- base-language

/*templet$$include*/ <-- user-prefix

 #include <iostream> <-- base-language

/*end*/ <-- user-postfix

/*templet* <-- scheme-prefix

 *hello<function>. <-- module-scheme

end/ <-- scheme-postfix

void hello(){ <-- base-language

/*templet$hello$*/ <-- user-prefix

 std::cout <<

''hello world!!!''; <-- base-language

/*end*/ <-- user-postfix

} <-- base-language

Lexical analyzer defines the boundaries of the blocks by signatures, recognizing specific sub-

strings in a character stream. For example, the module scheme may be preceded by a combina-

tion of characters /*templet*, and finish by *end*/. User block prefixes include identifiers for

binding the blocks with module scheme: /*templet$hello$*/ bound with *hello<function>.

The module is a program skeleton, and user blocks are extension points. Module scheme de-

fines the structure of program skeleton.

The markup language implies a mapping algorithm. The mapping is a module transformation

carried out by rewriting the module code. The mapping is applied only to a module with syntac-

tically correct scheme. As a result of this transformation the code and the scheme becomes iso-

morphic meaning that the code can be reproduced from the scheme and vice versa. New user

blocks may appear. Existing user blocks may move to new positions or turn into comments.

Programming model

The module scheme includes definitions of the two DSL classes: channel and process. The

channel describes communication, while the process describes data processing. Any DSL class

inherits its behavior from BaseChannel or BaseProcess runtime classes. The classes should be

implemented in a way that the following behavior is possible.

Информационные технологии и нанотехнологии-2016

929

class Channel: public BaseChannel{

 public:

 // test whether the channel it accessible

 bool access_client(){...} // at client side

 bool access_server(){...} // at server side

 // client sends entire channel to server

 void send_client(){...}

 // server sends entire channel to client

 void send_server(){...}

...

};

class Process: public BaseProcess{

 public:

 // receive data on the channel

 virtual void recv(BaseChannel*);

 // bind a channel to the process as client

 bool bind_client(BaseChannel*){...}

 // .. or server

 bool bind_server(BaseChannel*){...}

...

}

The BaseChannel has the following behavior. The access to the channel alternately belongs to

pair of processes called client and server. The client process has access right to the channel in

the beginning of computations. The methods access_client() and access_server() allow client or

server to check for access. The methods send_client() and send_server() can be used to grant

access from client to server or from server to client respectively.

The BaseProcess has the following behavior. The methods bind_client() and bind_server()

establish connection between a process (as a client or as a server) and a channel. The method

recv() is called at the moment getting access to the channel. The channel is passed as recv() ar-

gument.

The implementation also carries out the rules below. If the process gets access to multiple

channels, it takes several consecutive calls to recv() in random order. If some process sends the

channel access to another process, the other process will sooner or later get the access.

Concurrent execution semantics

The program implementation in C++ language should provide the opportunity for a non-

deterministic performance. The non-determinism of program execution is simulated by means of

pseudo-random numbers.
void TempletProgram::run()

{

 size_t rsize;

 // while message queue is not empty

 while(rsize=ready.size()){

 //select random channel which

 //is currently sending message

 //then exclude this channel

 //from the message queue

 //and move it to not sending state

Информационные технологии и нанотехнологии-2016

930

 int n=rand()%rsize;

 auto it=ready.begin()+n;

 BaseChannel*c=*it;ready.erase(it);

 c->sending=false;

 //extract the process to which the message

 //was sent from the channel

 //run message handling method recv()

 //for the channel and

 //pass the channel as

 //the argument to this method

 c->p->recv(c);

 }

}

Appropriate runtime libraries are provided for truly parallel execution of a code. Some modifi-

cations to mapping algorithm may also be required.

Module scheme syntax

This is a complete EBNF description of module scheme in the Templet language.
channel = '~' ident [params]

 ['=' state {';' state}] '.'.

state = ['+'] ident [('?'|'!') [rules]].

rules = rule { '|' rule }.

rule = ident { ',' ident } '->' ident.

process = '*' ident [params]

 ['=' ((ports [';' actions])

 | actions)] '.'.

ports = port {';' port}.

port = ident ':' ident

 ('?'|'!')[(rules ['|' '->' ident])

 |('->' ident)].

actions = action {';' action}.

action = ['+'] [ident ':'] disjunction ['->'

 ([ident] '|' ident) | ident].

disjunction = conjunction { '|' conjunction}.

conjunction = call {'&' call}.

call = ident '(' [args] ')'.

args = ident ('?'|'!') ident

 {',' ident ('?'|'!') ident }.

params = '<' ident {',' ident} '>'.

For example, there is a program that checks the trigonometric identity sin2x+cos2x=1 in paral-

lel. The process of Master class sends x values to working processes of Worker class via chan-

nels of Link class. The master gets the squares of trigonometric functions and calculates their

sum in return. The Channel protocol to verify the trigonometric identity may be coded in Tem-

plet DSL like below.
~Link = +BEGIN ? ArgCos -> CALCCOS |

 ArgSin -> CALCSIN;

 CALCCOS ! Cos2 -> END;

 CALCSIN ! Sin2 -> END.

Информационные технологии и нанотехнологии-2016

931

The Master and Worker processes for checking the trigonometric identity can be defined as

follows.
*Master =

 p1:Link ! Sin2 -> join;

 p2:Link ! Cos2 -> join;

 +fork(p1!ArgSin,p2!ArgCos);

 join(p1?Sin2,p2?Cos2).

*Worker =

 p : Link ? ArgSin -> sin2 | ArgCos -> cos2;

 sin2(p?ArgSin,p!Sin2);

 cos2(p?ArgCos,p!Cos2).

Any Templet program is a network of objects. Objects are instances of C++ classes generated

from the DSL. These C++ classes are in turn derived from BaseChannel class or BaseProcess

class. The network of objects is coded manually in C++.

Applications overview

The current implementation includes another three samples to illustrate the practical use of the

Templet language for various scopes.

The Gauss-Seidel method for solving the Laplace equation is the first one. This example illus-

trates the use of the toolkit in the field of high performance scientific computing. It also shows

how the simulation runtime can help to predict program performance without an explicit math-

ematical model or parallel execution.

An example from the field of linear algebra is the second one. This is an illustration of distrib-

uted matrix multiplication algorithm. It shows that the Templet implementation of the actor

model is well suited both for shared and distributed parallel architectures.

The business process model example is the third one. The Templet DSL can be used to model

and analyze concurrency in non-technical systems, for example, in the area of business process

modeling. We studied a business scenario written in a human language and composed a formal

specification for the scenario in the Templet language. The static type analysis, debugging, and

testing of the program were used to verify the correctness of the specification. In particular, we

compared programmatically generated event sequences with expected sequences for the studied

business process. This example illustrates that in our approach much of model verification is

done by C++ compiler and Templet runtime.

Related works

The experimental implementation of the domain-specific language toolkit showed the following

benefits of our approach.

Additional language constructions are not required to explain the meaning of an algorithm with

concurrent control. This is similar to approach based on object-oriented libraries STL [7], TBB

[8], CCR [9], Boost [10], and others. However, the markup and preprocessing technique reduc-

es the amount of manual coding.

Информационные технологии и нанотехнологии-2016

932

More reliable protection against programming errors is provided. This feature is compatible

with modern concurrent programming languages Go [11], Occam [12], Limbo [13], Erlang

[14]. Static type checking in the C++ language helps to prevent incorrect connection of message

source and message recipient. Semantic checking can also be implemented at the preprocessor

level. For example, one can check the attainability of a state in the communication protocol for

channels and the possibility to call a method for processes. The check can also be carried out

during the program execution. If pair of processes does not perform a prescribed messaging

protocol, calculations will stop.

Behavior of the Templet program can be investigated in more detail by means of problem-

oriented debugger. The mapping algorithm can add code to provide information to the debug-

ger. The performance prediction of a parallel program is also possible. Discrete event simula-

tion library can easily replace standard execution mechanism.

The markup language is a mean of skeleton programming and code reuse [15,16]. One can de-

sign a universal skeleton for programs with similar control flow and adapt it to specific applica-

tions. The adaptation is made by the changing of message variables and handlers. This tech-

nique can be used for programming multi-core and many-core systems [17,18].

The markup language defines concurrent execution with sequential code. This technique is used

in incremental parallelization. A number of well-known [19,20] and experimental [21,22] tools

for defining iterative or recursive parallelism are based on markup. We adopted the same meth-

od for an actor model of parallel execution.

The DSL language can be applied to different general-purpose programming languages. It is

compatible with the modern technologies [23,24] used in industrial process control software

development.

Conclusion

Our research shows a practical interest of the DSL-based approach for parallel programming.

We got a fully working but relatively simple implementation of the Templet domain-specific

language. This implementation had been deployed online as a part of the web service Tem-

pletWeb (http://template.ssau.ru/templet).

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation

within the framework of the Program designed to increase the competitiveness of SSAU among

the world's leading scientific and educational centers over the period from 2013 till 2020; and it

was partially supported by the RFBR grant 15-08-05934 A.

References

1. Vostokin S. Templet: a markup language for concurrent programming. arXiv preprint 2014;

arXiv:1412.0981.

2. Ward MP. Language-oriented programming. Software-Concepts and Tools 1994; 15(4): 147-161.

3. Dmitriev S. Language oriented programming: The next programming paradigm. JetBrains onBoard 2004;

1(2):1-13.

4. Hoare C. Communicating sequential processes. Chapter in book: The origin of concurrent programming.

Springer 2002; 413-443.

http://template.ssau.ru/templet

Информационные технологии и нанотехнологии-2016

933

5. Wirth N. The programming language Oberon. Software: Practice and Experience 1988; 18(7): 671-690.

6. Hewitt C, Bishop P, Steiger R. A universal modular actor formalism for artificial intelligence. in Proc. of

the 3rd international joint conference on Artificial intelligence, 1973; 235-245.

7. Stroustrup B. The C++ programming language. Pearson Education 2013.

8. Reinders J. Intel threading building blocks: outfitting C++ for multi-core processor parallelism. O’Reilly

Media, Inc. 2007.

9. Richter J. Concurrent affairs-concurrency and coordination runtime. Louisville: MSDN Magazine 2006;

117-128.

10. Schäling B. The boost C++ libraries. Boris Schäling 2011.

11. The Go programming language specification. Google Inc. 2009. Source:

<http://golang.org/doc/go_spec.html>.

12. Occam programming manual. INMOS Limited. Prentice Hall Direct; 1984.

13. Ritchie DM. The Limbo programming language. Inferno Programmer(TM) Manual, vol. 2; 1997.

14. Larson J. Erlang for concurrent programming. Communications of the ACM, 2009; 52(3): 48-56.

15. Cole M. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programming.

Parallel computing 2004; 30(3): 389-406.

16. González-Vélez H, Leyton M. A survey of algorithmic skeleton frameworks: high-level structured paral-

lel programming enablers. Software: Practice and Experience 2010; 40(12): 1135–1160.

17. Aldinucci M, Danelutto M, Kilpatrick P. Skeletons for multi/many-core systems. in Proc. of PARCO,

2009; 265–272.

18. Karasawa Y, Iwasaki H. A parallel skeleton library for multi-core clusters. in Parallel Processing, 2009.

ICPP’09. International Conference on. IEEE, 2009; 84–91.

19. Dagum L, Menon R. OpenMP: an industry standard API for shared-memory programming. Computation-

al Science & Engineering, IEEE 1998; 5(1): 46-55.

20. Blumore R, Joerg C, Kuszmaul B, Leiserson C, Randall K, Zhou Y. Cilk: An efficient multithreaded

runtime system. Journal of parallel and distributed computing 1996; 37(1): 55-69.

21. Konovalov N, Krukov V, Sazanov Y. “C-DVM - a language for the development of portable parallel pro-

grams. Programming and Computer Software 1999; 25(1): 46-55.

22. Abramov S, Adamovich A, Inyukhin A, Moskovsky A, Roganov V, Shevchuk E, Shevchuk Y,

Vodomerov A. OpenTS: an outline of dynamic parallelization approach. in Parallel Computing Technolo-

gies. Springer, 2005; 303–312.

23. Atkinson C, Kuhne T. Model-driven development: a metamodeling foundation. Software, IEEE 2003;

20(5): 36-41.

24. Selic B. The pragmatics of model-driven development. IEEE software 2003; 20(5): 19–25.

http://golang.org/doc/go_spec.html

