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Abstract 

Median filtering has been widely used in scalar-valued image processing as an edge preserving operation. The basic idea is that the pixel value 

is replaced by the median of the pixels contained in a window around it. In this work, this idea is extended onto vector-valued images. It is 

based on the fact that the median is also the value that minimizes the sum of distances between all grey-level pixels in the window. The 

Fréchet median of a discrete set of vector-valued pixels in a metric space with a metric is the point minimizing the sum of metric distances to 

the all sample pixels. In this paper, we extend the notion of the Fréchet median to the general Fréchet median, which minimizes the Fréchet 

cost function (FCF) in the form of aggregation function of metric distances, instead of the ordinary sum. Moreover, we propose use an 

aggregation distance instead of classical metric distance. We use generalized Fréchet median for constructing new nonlinear Fréchet MIMO-

filters for multispectral image processing.  
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1. Introduction 

The basic idea behind this paper is the estimation of the uncorrupted image from the distorted or noisy image, and is also 

referred to as image “denoising”. To denoise images is to filter out the noise. The challenge is to preserve and enhance important 

features during the denoising process. For images, for example, an edge is one of the most universal and crucial features. There 

are various methods to help restore an image from noisy distortions [1-3]. Each technique has its advantages and disadvantages. 

Selecting the appropriate method plays a major role in getting the desired image. Noise removal or noise reduction can be done 

on an image by linear or nonlinear filtering.  The more popular linear technique is based on average (on mean) linear operators. 

Denoising via linear filters normally does not perform satisfactorily since both noise and edges contain high frequencies. 

Therefore, any practical denoising model has to be nonlinear. In this paper, we propose a new type of nonlinear data-dependent 

denoising filter called the aggregation digital MIMO-filter. 

Almost 2500 years ago, the ancient Greeks defined a list of ten (actually eleven) distinct “means” [4-5]. All these means are 

constructed using geometric proportions. Among these, are the well-known arithmetic, geometric, and harmonic means. These 

three principal means, which are used particularly in the works of Nicomachus of Gerasa and Pappus, are the only ones that 

survived in common usage. In fact, for a set of N positive numbers 1 2, ,..., Nx x x R , the arithmetic mean is the positive 

number  
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The geometric mean which is given by 1 2 ...
N Nc x x x

 
also has a variational property; it minimizes the sum of the squared 

hyperbolic distances to the given points 1 2, ,..., :Nx x x  2
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There is similar situation for vector-valued data. For a given set of N points 1 2, ,..., N Kx x x R , the arithmetic vector-

valued mean is given by the barycenter 
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Fig. 1. Distances from an arbitrary point c  to each point 
1 2, ,..., Nx x x R

 
from the 9-cellular window. 

Note for 1,p 
 1

 represents the rectilinear, or Manhattan, or city distance metric, for  2,p 
 2

 is the Euclidean, or 

straight-line, distance metric, and for  ,p   
 is known as the Chebyshev distance metric. The Chebyshev distance in K

dimensions can be written as:     1 1 2 2, max , ,..., .i i i i

K Kc x c x c x    c x  In this paper, we extend the notion of centrality 

of empirical data, using aggregation distance:    1 1 2 2, , ,...,i i i i

K Kc x c x c x    
Agg

c x Aggreg  instead of (1), where Aggreg  

is an aggregation operator (function) [6-10] and used  , i
Agg

c x  for designing of new MIMO-filters. We develop a conceptual 

framework and design methodologies for multichannel image median filtering systems with assessment capability. 

2. The object of the study. Optimal Fréchet point, mean and median 

The term multichannel (multicomponent, multispectral, hyperspectral) image is used for an image with more than one 

component. They are composed of a series of images in different optical bands at wavelengths 1 2, ,..., K   , called the spectral 

channels:  
1 2

( , ) ( , ), ( , ),..., ( , ) ,
K

x y f x y f x y f x y  f  where K  is the number of different optical channels, i.e., 

2
,( , ) : Kx y f R R  where 

KR  is the multicolor space. Let us introduce the observation model and notion used throughout the 

paper. We consider noise signals or images of the form ( ) ( ) ( ),f x s x η x  where  1 2( ) ( ), ( ),..., ( )Ks s ss x x x x  is the original 

multichannel signal,  1 2( ) ( ), ( ),..., ( )K  η x x x x  denotes the multichannel noise introduced into the signal ( )s x  to produce the 

corrupted signal  1 2( ) ( ), ( ), , ( )Kf f ff x x x x . Here ,i x Z  
2( , ) ,i j x Z  or 

3( , , )i j k x Z  are a 1D, 2D, or 3D 

coordinates, respectively, that belong to the signal (image) domain and represent the pixel location. If 2 3, ,x Z Z Z  then 

( ), ( ),f x s x  ( )η x  are 1D, 2D and 3D multichannel signals, respectively. The aim of image enhancement is to reduce the noise as 

much as possible or to find a method which, given ( )s x , derives an image ˆ( ) ( )y x s x  as close as possible to the original ( )s x , 

subject to a suitable optimality criterion.  

In 2D standard linear and median SISO-filters with a square window 
,

( , )
,

M ( , )
m r n r

i j
m r n r

m n
 

 
 
   of size    2 1 2 1r r    is 

located at ( , )i j  the arithmetic mean and median replace the central grey-level (scalar-valued) pixel 

   
( , ) ( , )( , ) ( , )

ˆ ˆ( , ) ( , ) ,    ( , ) ( , ) ,
i j i jm n M m n M

s i j f m n s i j f m n
 

 Arithm Median    (2) 

where ˆ( , )s i j  is the filtered image,  
( , )( , )

( , )
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

is image block of the fixed size    ( , ) 2 1 2 1i jN M M M r r        

extracted from f  by moving window ( , )M i j  at the position ( , )i j .  Symbols Arithm  and Median are the arithmetic mean 

(average) and median operators, respectively. In the multichannel case (for hyperspectral images), we need to define vector-

valued arithmetic mean (average) and median.  Median filtering has been widely used in image processing as an edge-preserving 

filter. The basic idea is that the pixel value is replaced by the median of the pixels contained in the window around it. In this 

work, this idea is extended to vector-valued images, because the median is also the value that minimizes the 1  distance in R  

(according to (1)) between all the gray-level pixels in the N -cellular window (see Fig. 1). In the multichannel case, we need to 

define a distance   between pairs of objects on the domain 
KR .  

Definition 1 [11-12]. The optimal weighted Fréchet median and mean associated with the metric ( , ) x y  are the points 

, K

opt optm c R= =  that minimize the Fréchet cost functions  1 1
( ) ,

N i

ii
w 


FCF c c x  and  2

2 1
( ) ,

N i

ii
w 


FCF c c x  (the 

weighted sum distances from an arbitrary point c  to each point 1 2, ,..., N
x x x ). They are formally defined as 
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Fig. 2. Distances (red lines) from an arbitrary point c  to each point 
1 2, ,..., N Kx x x R  from the 9-cellular window for two probe locations. 

When all the weights are equal ( 1 /iw N ) we call ,opt optm c= = simply the geometric median and mean. Note that minarg

means the argument, for which the sum is minimized. In this case, it is the point optc= =from 
KR , for which the sum of all 

distances to the i
x 's is minimum. So, the optimal Fréchet median and mean of a discrete set of the observations ( N  pixels) in 

the metric space ,K R  are points minimizing the sum of distances and the sum-of-squared distances to the N  pixels, 

respectively (see Fig. 2). 

This generalizes the ordinary median, which has the property of minimizing the sum of distances for one-dimensional data. 

The properties of these points have been extensively studied since the time of Fermat (this points are often called the Fréchet 

points or Fermat-Weber points [12]).   When filters (3) are modified as follows: 
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it becomes the Fréchet median and mean MIMO-filters (vector-valued filters). Note, that the Fréchet median and mean MIMO-

filters are not equivalent to classical vector-median and vector-mean filters (see [13-14]), where, in the first, s  runs among 

observed N  data  
( , )( , )

( , )
i j

K

m n M
m n


f R  and, in the second,    1 1

, ( , ) , ( , ) ( , )m n m n m n   s f s f s f . In our case s  runs 

among whole space  K
R  and  , ( , )m n s f  is an arbitrary distance. 

In this paper, we extend the notion of the Fréchet median and mean (3)-(4) to generalized Fréchet point, which minimizes an 

arbitrary positive convex function on 1N 
 
variables - generalized Fréchet cost function (GFCF) - 

(1) (2) ( )( , ,..., )N  GFCF  
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instead of the ordinary sum, where 
1 1 2 2( , ),  ( , ),  ...,  ( , )N N       c x c x c x . In particular, important case we are going to 

use aggregation Fréchet cost function in the form of an aggregation function  CFGFCF Agg : 
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In this case 
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Moreover, we propose to use an aggregation distance  ,Agg c x  instead of the classical distance .  It gives a new cost function 

     1 2

1 2, , , ,..., , N

Nw w w   
 CF Agg Agg Agg

Agg c x c x c x   and new optimal Fréchet point associated with the aggregation distance

 ,Agg c x  and CFAgg  
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We use the generalized Fréchet point for constructing new nonlinear filters. When filters (3) are modified as follows: 
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it becomes the Fréchet aggregation MIMO-filters. They are based on an arbitrary pair of aggregation operators CFAgg and 

 ,Agg c x , which could be changed independently of one another.  

In the first part [6], the notion of digital nonlinear SISO-filters (single-input single-output) associated with aggregation 

operators of averaging types was defined. In this part, we are going to consider a general theory of nonlinear MIMO-filters 

(multi-input multi-output).  They are based on the generalized Fréchet point and on an arbitrary pair of aggregation operators 

,CF AggAgg , which could be changed independently of one another. For each pair of aggregation operators, we get the unique 

class of new nonlinear filters. We show that a large body of non-linear filters proposed to date constitute a proper subset of 

aggregation digital MIMO-filters. 

3. Methods 

3.1. Aggregation operators 

The aggregation problem consist in aggregating N -tuples of objects  1 2, ,..., Nx x x  all belonging to a given set D , into a single 

object of the same set D , i.e., : ND DAgg . In fuzzy logic theory, the set D  is an interval of the real [0,1]D   R . In image 

processing theory [0,255]D   Z . In this setting, an aggregation operator is simply a function, which assigns a number y  to 

any N -tuple  1 2, ,..., Nx x x  of numbers that satisfies [15]:  

1) 1 2( , ,..., )N Nx x xAgg  is continuous and monotone in each variable; to be definite, we assume that Agg  is increasing in 

each variable. 

2)  The aggregation of identical numbers is equal to their common value: ( , ,..., )N x x x xAggreg . 

     1 1 13) ,..., ,..., ,..., .N N Nx x x x x x Min Agg Max Here  1 2, ,..., Nx x xMin  and  1 2, ,..., Nx x xMax  are the minimum and 

the maximum values among the elements of  1 2, ,..., Nx x x .  

4)  1 2, ,..., Nx x xAgg  is a symmetric function:     (1) (2) ( ) 1 2, ,..., , ,..., ,N Nx x x x x x   Agg Agg N S  of  1,2,..., N , 

where NS  is the set of all permutations of  1,2,..., N . In this case  1,..., Nx xAgg  is invariant (symmetric) with respect to 

the permutations of the elements of  1 2, ,..., Nx x x .  

We list below a few particular cases of aggregation means: 

    1) Arithmetic and weighted means ( ( )K x x ):    1

1 2 1 2

1 1

, ,..., ,    , ,..., ,
N N

N i N i i

i i

x x x N x x x x w x

 

  Arithm WArithm

where 
1

1.
N

i

i

w


  Classical operator  1 2, ,..., Nx x xArithm  is interesting because it gives an aggregated value that is smaller than 

the greatest argument and bigger than the smallest one. Therefore, the resulting aggregation is "a middle value". This property is 

known as the compensation property that is described mathematically by:    1 2 1 2, ,..., , ,...,N Nx x x x x x min Arith  

 1 2, ,..., ,Nx x xmax where  1 2, ,..., Nx x xmin ) and  1 2, ,..., Nx x xmax  are the algebraic minimum and maximum functions, 

respectively. The mappings min and max both satisfy the defining conditions and therefore are aggregations (means), even 

though they are rarely mentioned - or even perceived - as such. It is often used since it is simple and satisfies the properties of 

monotonicity, continuity, symmetry, associativity, idempotence and stability for linear transformations.  

       2) Another operator that follows the idea obtaining "a middle value" is the k -order statistic. It consists in ordering the 

arguments from the smallest one to the biggest one    1 2 (1) (2) ( ) ( ), ,..., ,..., , ,..., ,...,m N m Nx x x x x x x x  (from the smallest to the 

biggest element, where 2 1N m  ). The k -order statistic chooses the element on the k th position on the ordered list: 

   1 2 (1) (2) ( ) ( ) ( ), ,..., ,..., , ,..., ,..., .k k N k k N kx x x x x x x x x OS OS   This aggregation operator satisfies the boundary conditions, the 

monotonicity, the symmetry, the idempotence and evidently the compensation behavior.  

   3) Three remarkable particular cases of the k -order statistic are the minimum, median and maximum:  1 2 (1), ,..., ,Nx x x xmin  

   1 2 ( ) 1 2 ( ), ,..., ,    , ,..., .N m N Nx x x x x x x x med max The minimum gives the smallest value of a set, while the maximum gives 
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the greatest one. They are aggregation operators since they satisfy the axioms of the definition. The main properties of these 

operators are monotonicity, symmetry, associativity, idempotence. Mathematically speaking they have a compensation behavior, 

but these are the limit cases. Using these operators, we will never obtain an aggregated value "in the middle". For this reason, we 

do not consider that we can talk about compensation behavior in this case.  

    4) Very notable particular case corresponds to the function ( ) .pK x x  We obtain then Hölder mean:  1 2, ,...,p Nx x x Hol  
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Power  It is easy to see, that distances are particular cases of aggregation operator. We can use 

an arbitrary Agg  as  ,Agg c x . For example,  

1) The Kolmogorov aggregation distances      1
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2) In particular, the Hölder aggregation distances    
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3) The k -order statistic distance      1 1 2 2, , , ,..., .
k

i i i i i

OS k K Kc x c x c x     
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Three remarkable particular cases are maximum, median and minimum distances 
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The same situation is true for the aggregation Fréchet cost function CFAgg . Using different aggregation operators, we can 

obtain different aggregation Fréchet cost functions. For example, 

1) The Kolmogorov-Fréchet cost functions      (1) (2) ( ) (1) (2) ( ) 1 ( )
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K

N N i

i

K K      



 
   

 
CF Agg Agg Agg CF Agg Agg Agg Agg

Agg Kol           

2) In particular, the Hölder-Fréchet cost functions      (1) ( ) (1) (2) ( ) ( )
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p
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3) The k -order statistic-Fréchet cost functions      (1) ( ) (1) ( ) (1) ( ),..., ,..., ,..., . N k N N
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Three remarkable particular cases are maximum-, median- and minimum-Fréchet cost functions 
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and so on.  Every pair  ,CF AggAgg
 
gives us an exotic Fréchet aggregation MIMO-filters (17). For example, 
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3.2. Suboptimal 2D Fréchet MIMO-filters 

In computation point view, it is better to restrict the infinite search domain from KR  to a finite subset KRD . We are going 

to use the following finite subsets:  

 The set of observed data  1 2, ,..., N K

ob D x x x R .  

 The hyperspectral hypercube  : [0,255]K

dig D . For example, if 3K  , then 
3[0,255]dig D  is the RGB-color cube.  
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In this case, we obtain definition of D -optimal Fréchet points. 

Definition 2. The suboptimal classical Fréchet mean and median (or D -optimal Fréchet points) associated with the classical 

metric ( , ) x y  are the points [0,255]K Kdig

subopt dig  c D R  and  1 2, ,..., Kob N

subopt ob  c D x x x R
 
that minimizes the 

classical FCF over restricted search domains [0,255]K

dig D  and   1 2, ,..., N

ex D x x x
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We use D -Fréchet points for constructing the following nonlinear digital MIMO-filters 
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The next generalization of Fréchet MIMO-filters is based on the following suboptimal Fréchet points. 

Definition 3. The suboptimal generalized Fréchet points associated with an aggregation metric ( , )
Agg

x y  are the points 

[0,255]K Kdig

subopt dig  c D R  and  1 2, ,..., Kob N

subopt ob  c D x x x R
 
that minimizes the AFCF over restricted search domains 

[0,255]K

dig D  and   1 2, ,..., N

ob D x x x  
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We use these points for constructing the following nonlinear digital MIMO-filters 
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3.3. Examples of  Fréchet MIMO-filters 

Example 1. If observation data are real numbers, i.e., 
1 2, ,..., Nx x x R , and the distance function is the city distance 

1( , ) ( , ) ,x y x y x y     AFCF is pL  -distance, then the optimal and suboptimal Fréchet points for data 
1 2, ,..., Nx x x R  to be 
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In particular, if 1,2,p    then we obtain the Fréchet point (FrechPt), arithmetic mean (ArithMean) and midrange (MidPt) 

of a set of observations
1 2, ,..., ,Nx x x R  respectively: 
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In this case, filters  
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are the optimal maximum likelihood SISO-filter for Laplacian ( 1p  ), Gaussian ( 2p  ) and Uniform (on [-0.5,+0.5]) PDF (

p  )  of noises, respectively.  

    If [0,255]dig D D
 
then we obtain the following suboptimal estimates (for the same values 1,2,p   ):   

                1 2

1
[0,255]

1

- , | , ,..., min .
N

p
dig N ip
subopt dig p

c
i

c x x x c x 




 
    

 
 
Agg

D AgFrechPt Hol arg
                                          

                                                                                                      

In this case, filters  
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are the suboptimal maximum likelihood SISO-filter for the same noises.  

If  1 2, ,..., N

ob x x x D D
 
then we obtain the next suboptimal estimates (for the same values 1,2,p   ):  the suboptimal 

Fréchet point is the classical median (Med), arithmetic mean (ArithMean) and midrange (MidPt) of a set of observations 
1 2, ,..., ,Nx x x R  respectively: 
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In this case, filters  
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are the suboptimal maximum likelihood SISO-filter for the same noises. It is interesting that only in the first case we have 

classical median filter    
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Example 2. If observation data are vectors, i.e.,
  

1 2, ,..., N Kx x x R
 
and the distance function is 

p
distance 
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In particular, if qCFAgg Hol  (and 
1 2 ... Nw w w   )  then  
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If 1,2,p    and 1,2,q  
 
 then we obtain nine Fréchet points and nine Fréchet MIMO-filters 
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For each pair of aggregation operators, we get the unique class of new nonlinear filters. If one can accurately model the noise 

distribution, then the filtering results can be significantly improved by using a suitable metric  ,Agg c x
 
or aggregation cost 

function CFAgg . The link between the noise distribution and the metric is given by the maximum likelihood theory. 
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4. Results and Discussion 

We performed a number of experiments with the proposed MIMO-filters using several images. The results of some of them 

are presented here. We developed five the following filtering algorithms: 

1) Classical arithmetic mean MIMO-filter (Mean)  
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        a) Original image.                   b) Noise  images, PSNR=25.08. 

 

   
      a) Original image.                     b) Noise  images, PSNR=15.27. 
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Fig. 3. Original (a) and noise (b) images.  

Impulse noise: “Uniform PD”. Denoised images  (c)-(f). 

Fig. 4. Original (a) and noise (b) images.  

Impulse noise: “Black-white salt-pepper”. Denoised images  (c)-(f). 

 

2) Classical vector-valued median filter - independent median filtering along every channel ,r gR R  and bR  with the research 

domain in the form of observed data ,ob ,ob[0,255] ,  [0,255] ,r r r g g gs D s D   =  ,ob [0,255]b b bs D   (three median SIS0-

filters acting in each channel. Our designate 
3-obD SISO -filter or Med) 
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3) Elaborated vector-valued median filter - independent median filtering along every channel ,r gR R  and bR  with the research 

domain in the form of digital domains [0,255] ,  [0,255] ,r r g gs s =  [0, 255]b bs   (three elaborated median SIS0-filters acting in 

each channel - 
3-digD SISO -filter or ElabMed) 
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        a) Original image.                   b) Noise images, PSNR=15.28. 

 Table 1. Noise wit uniform pdf  
% PSNR Mean Med ElabMed VecMed ElabVecMed 

05 19.05 26.68 24.16 24.16 22.36 25.83 

10 15.71 23.99 20.88 20.88 19.09 22.71 

20 13.48 21.89 18.57 18.57 16.64 20.52 

40 11.79 20.11 16.72 18.57 15.11 18.77 

50 10.57 18.69 15.37 15.37 13.84 17.46 

70 08.83 16.41 13.26 13.26 11.91 15.44 
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Table 2. Black-white salt-pepper noise  

% PSNR Mean Med ElabMed VecMed ElabVecMed 

01 15.27 23.47 32.97 32.92 32.92 33.02 

05 12.49 20.60 29.80 29.80 29.72 29.80 

10 10.94 18.87 25.54 25.46 25.46 25.50 

20 09.90 17.47 21.81 21.67 21.67 21.74 

50 09.15 16.51 18.92 18.92 18.75 18.82 

70 08.54 15.67 16.61 16.61 16.40 16.51 
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Table 3. Color salt-pepper noise 
% PSNR Mean Med ElabMed VecMed ElabVecMed 

01 15.20 23.49 32.77 32.77 33.26 33.54 

05 12.40 20.56 29.58 29.58 31.84 32.09 

10 10.93 18.78 25.57 25.57 30.00 30.10 

20 09.81 17.43 21.78 21.78 27.32 27.32 

50 09.13 16.48 19.00 19.00 24.77 24.82 

70 08.82 15.63 16.60 16.60 22.06 22.26 

  

Fig. 5. Original (a) and noise (b) images.  

Noise: “Color Salt-Pepper”. Denoised images  (c)-(f). 

 

 

4) Classical vector-valued median MIMO-filter [13-14] with the research domain in the form of observed data 
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5) Elaborated vector-valued median MIMO-filter with the research domain in the form of RGB-cube 
3[0,255]rgbs=  (

-dig MIMOD or ElabVecMed) 
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For the experiments presented here, the "Macaw" images (Figures 2a,3a,4a, respectively) are used. Salt-Pepper and 

Unichannel Uniform-PDF noises are added to the images to obtain noised images with different peak signal-to-noise (PSNR). 

The performance evaluation of the filtering operation is quantified by the PSNR (Peak Signal to Noise Ratio). The proposed 

suboptimal Fréchet MIMO-filters (21)-(24) has been applied to noised 3 3  image "Macaw". We use 3 3 -window. The 

denoised images are shown in Fig. 3-5. Tables 1-3 are the filtering results at different intensities and types of noise. All Fréchet 

MIMO-filters ( -ob MIMOD  and -dig MIMOD ) have very good denoised properties. It is easy to see that results for Fréchet filters 

-ob MIMOD  and -dig MIMOD  are better, compared to the classical Mean- and-
3-obD SISO filters. Filter

3-digD SISO  gives 

elaborated results with respect to their classical counterpart 
3-obD SISO . These facts confirm that further investigation of these 

new filters is perspective.  

5. Conclusion 

A new class of nonlinear generalized MIMO-filters for multichannel image processing are introduced in this paper. These 

filters are based on an arbitrary pair of aggregation operators, which could be changed independently of one another. For each 

pair of parameters, we get the unique class of new nonlinear MIMO-filters. The main goal of the work is to show that 

generalized Fréchet aggregation means can be used to solve problems of image filtering in a natural and effective manner. 
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