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Abstract 

There are various methods to help restore an image from noisy distortions. Each technique has its advantages and disadvantages. Selecting the 

appropriate method plays a major role in getting the desired image. Noise removal or noise reduction can be done on an image by linear or 

nonlinear filtering.  The more popular linear technique is based on average (on mean) linear operators. Denoising via linear filters normally 

does not perform satisfactorily since both noise and edges contain high frequencies. Therefore, any practical denoising model has to be 

nonlinear. In this work, we introduce and analyze a new class of nonlinear SISO-filters that have their roots in aggregation operator theory. We 

show that a large body of non-linear filters proposed to date constitute a proper subset of aggregation filters.  
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1. Introduction 

The basic idea behind this paper is the estimation of the uncorrupted image from the distorted or noisy image, and is also 

referred to as image “denoising”. To denoise images is to filter out the noise. The challenge is to preserve and enhance important 

features during the denoising process. For images, for example, an edge is one of the most universal and crucial features. There 

are various methods to help restore an image from noisy distortions [1,2]. Each technique has its advantages and disadvantages. 

Selecting the appropriate method plays a major role in getting the desired image. Noise removal or noise reduction can be done 

on an image by linear or nonlinear filtering.  The more popular linear technique is based on average (on mean) linear operators. 

Denoising via linear filters normally does not perform satisfactorily since both noise and edges contain high frequencies. 

Therefore, any practical denoising model has to be nonlinear. In this paper, we propose a new type of nonlinear data-dependent 

denoising filter called the aggregation digital filter (ADF). 

2. The object of the study 

Let us introduce the observation model and notion used throughout the paper. We consider noise signals or images of the 

form ( ) ( ) ( ),f x s x η x  where  1 2( ) ( ), ( ),..., ( )Ks s ss x x x x  is the original multichannel signal,  1 2( ) ( ), ( ),..., ( )K  η x x x x  

denotes the multichannel noise introduced into the signal ( )s x  to produce the corrupted signal  1 2( ) ( ), ( ), , ( )Kf f ff x x x x . 

Here ,i x Z  
2( , ) ,i j x Z  or 

3( , , )i j k x Z  are a 1D, 2D, or 3D coordinates, respectively, that belong to the signal 

(image) domain and represent the pixel location. If 2 3, ,x Z Z Z  then ( ), ( ),f x s x  ( )η x  are 1D, 2D and 3D multichannel signals, 

respectively. The aim of image enhancement is to reduce the noise as much as possible or to find a method which, given ( )s x , 

derives an image ˆ( ) ( )y x s x  as close as possible to the original ( )s x , subject to a suitable optimality criterion [1].  

  In 2D standard linear and median filters with a square window 
,

( , )
,

M ( , )
m s n s

i j
m s n s

m n
 

 
 
   of size    2 1 2 1s s    is located at 

( , )i j  the arithmetic mean and median replace the central pixel 

   
( , ) ( , )( , ) ( , )

ˆ ˆ( , ) ( , ) ,    ( , ) ( , ) ,
i j i jm n M m n M

i j m n i j m n
 

 s Arithm f s Median f   

where ˆ( , )i js  is the filtered image,  
( , )( , )

( , )
i jm n M

m n


f is image block of the fixed size    2 1 2 1s s    extracted from f  by 

moving window ( , )M i j  at the position ( , )i j .  Symbols Arithm  and Median are the arithmetic mean (average) and median 

operators, respectively. When those filters are modified as follows 

 
( , ) ( , )

ˆ( , ) ( , ) ,
k l M i j

i j k l


s Aggreg f    (1) 

it becomes an aggregation digital filter, where Aggreg  is a generalized average or an aggregation operator [3].  

  In the first part, we are going consider a general theory of nonlinear SISO-filters (single-input single-output) associated 

with aggregation operators of averaging types. In the next parts, we will consider a general theory of nonlinear filters associated 

with aggregation operators of conjunctive and disjunctive types. We show that a large body of non-linear filters proposed to date 

constitute a proper subset of aggregation digital filters. 
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3. Methods 

3.1. Filters as discrete dynamic systems 

A discrete-time system (DTS) is a device or algorithm that, according to some well-defined input/output rule, operates on a 

discrete-time signal called the input signal ( )x n  or excitation to produce another discrete-time signal called the output signal or 

response ( )y n . For a DTS the output ( )y n  theoretically can depends on all earlier input values ( )
m n

x m


. DTS must memorizes 

these values. It requests infinite volume of memory. In real, discrete-time systems have finite memory and for this reason can 

memorize only a finite set of earlier input values  ( 1), ( 2),..., ( 1) .x n x n x n N     This set of earlier input values is called the 

prehistory of the input sample ( )x n  and denotes as  Hist ( , 1) : ( 1), ( 2),..., ( 1) .in n N x n x n x n N       Hence, for a DTS the 

output ( )y n  can depends on only a finite set of earlier input values. Mathematically speaking, a system is also a function of N  

variables. The input signal ( )x n  is transformed by the system into a signal ( )y n , which we express mathematically as 

( ) ( ), ( 1),..., ( 1) ( ),Hist ( ; 1){ } { }iny n x n x n x n N x n n N    Aggreg Aggreg   

where {.}Aggreg  is some well-defined transformation input/output rule (a function of N  variables) of input samples into an 

output sample ( )y n  at the discrete moment n . Block diagram representation of similar discrete-time system is illustrated in 

Fig.1a. It is called a non-recursive filter (NRF). 

More “clever” system have to analyzes to self-behavior and memorizes a finite set of earlier output values 

 ( 1), ( 2),..., ( ) .y n y n y n M    This set is called the prehistory of the output sample ( )y n  and denotes as 

 Hist ( , ) : ( 1), ( 2),..., ( ) .out n M y n y n y n M     In this case DTS analyzes both a input and output prehistories and after that the 

input signal ( )f n  is transformed by the system into a signal ( )y n , which we express mathematically as 

( ) ( ), ( 1),..., ( 1); ( 1),..., ( ) ( ),Hist ( ; 1) Hist ( , ){ } { , },in outy n x n x n x n N y n y n M x n n N n M      Aggreg Aggreg  

where {.}Aggreg  is some well-defined transformation input/output rule (a function of N M  variables) of input samples 

into an output sample ( )y n  at the discrete moment n . Block diagram representation of similar discrete-time system is 

illustrated in Fig.1b. It is called the recursive filter (RF). 

If если {.}Aggreg  is a linear function, then NRF is an infinite-impulse response filter (IIF). In this case, we have  
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Fig. 1. Discrete  non-recursive and recursive r filters. 
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        WArithm WArithm  

3.2. Aggregation operators 

The aggregation problem consist in aggregating N -tuples of objects  1 2, ,..., Nx x x  all belonging to a given set D , into a single 

object of the same set D , i.e., : ND DAggreg . In fuzzy logic theory, the set D  is an interval of the real [0,1]D   R . In 

image processing theory [0,255]D   Z . In this setting, an aggregation operator is simply a function, which assigns a number 

y  to any N -tuple  1 2, ,..., Nx x x  of numbers that satisfies [3]:  

1) 1 2( , ,..., )N Nx x xAggreg  is continuous and monotone in each variable; to be definite, we assume that Aggreg  is 

increasing in each variable. 

2)  The aggregation of identical numbers is equal to their common value: ( , ,..., )N x x x xAggreg . 

     1 1 13) ,..., ,..., ,..., .N N Nx x x x x x Min Aggreg Max Here  1 2, ,..., Nx x xMin  and  1 2, ,..., Nx x xMax  are the minimum 

and the maximum values among the elements of  1 2, ,..., Nx x x .  

4)  1 2, ,..., Nx x xAggreg  is a symmetric function:     (1) (2) ( ) 1 2, ,..., , ,..., ,N Nx x x x x x   Aggreg Aggreg
N S  of 

 1,2,..., N , where NS  is the set of all permutations of  1,2,..., N . In this case  1,..., Nx xAggreg  is invariant (symmetric) 

with respect to the permutations of the elements of  1 2, ,..., Nx x x . In other words, as far as means are concerned, the order 

of the elements of  1 2, ,..., Nx x x  is - and must be - completely irrelevant.  

Proposition 1.  (Kolmogorov [4]). If conditions 1)–4) are satisfied, the aggregation 1 2( , ,..., )Nx x xAggreg  of the average 

type are as of the forms:    
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   (2) 

or 
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   (3) 

where K  is a strictly monotone continuous function in the extended real line.  

In (2) and (3) we can use an arbitrary aggregation operator instead of Arithm , that gives new the Kolmogorov aggregation 

operators 

    

   

1

1 2 1 2

1 1 1 1

1 2 1 2

,

.

| , ,..., ( ), ( ),..., ( )

| , ,..., ( ), ( ),..., ( )

N N

N N

K x x x K K x K x K x

K x x x K K x K x K x



   



   

KolmAgg

KolmAgg

Aggreg

Aggreg
   (4) 

We list below a few particular cases of aggregation means:  

    1) Arithmetic and weighted means ( ( )K x x ): 

   1

1 2 1 2

1 1

, ,..., ,    , ,..., ,
N N

N i N i i

i i

x x x N x x x x w x

 

  Arithm WArithm    (5) 

where 
1

1.
N

i

i

w


  Classical operator  1 2, ,..., Nx x xArithm  is interesting because it gives an aggregated value that is smaller than 

the greatest argument and bigger than the smallest one. Therefore, the resulting aggregation is "a middle value". This property is 

known as the compensation property that is described mathematically by:    1 2 1 2, ,..., , ,...,N Nx x x x x x min Arith  

 1 2, ,..., ,Nx x xmax  where  1 2, ,..., Nx x xmin ) and  1 2, ,..., Nx x xmax  are the algebraic minimum and maximum functions, 

respectively. The mappings min and max both satisfy the defining conditions and therefore are aggregations (means), even 

though they are rarely mentioned - or even perceived - as such. It is often used since it is simple and satisfies the properties of 

monotonicity, continuity, symmetry, associativity, idempotence and stability for linear transformations. However, it has neither 

absorbent nor neutral element and has no behavioral properties.  

    2) Another operator that follows the idea obtaining "a middle value" is the median. It consists in ordering the arguments 

from the smallest one to the biggest one 
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Med    (6) 

This aggregation operator satisfies the boundary conditions, the monotonicity, the symmetry, the idempotence and evidently 

the compensation behavior.  

    3) There exists a generalization of this operator: the k -order statistic, with which we can choose the element on the k th 

position on the ordered list (from the smallest to the biggest element): 

   1 2 (1) (2) ( ) ( ) ( ), ,..., ,..., , ,..., ,..., .k k N k k N kx x x x x x x x x OS OS    (7) 

    4) Two remarkable particular cases of the k -order statistic are the minimum and the maximum: 

   1 2 (1) 1 2 ( ), ,..., ,    , ,..., .N N Nx x x x x x x x min max    (8) 

The minimum gives the smallest value of a set, while the maximum gives the greatest one. They are aggregation operators 

since they satisfy the axioms of the definition. The main properties of these operators are monotonicity, symmetry, associativity, 

idempotence. Mathematically speaking they have a compensation behavior, but these are the limit cases. Using these operators, 

we will never obtain an aggregated value "in the middle". For this reason, we do not consider that we can talk about 

compensation behavior in this case.  

    5) Geometric and weighted geometric means ( ( ) ln( )K x x ):  
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    6) Harmonic and weighted harmonic means  (
1( )K x x ):  
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    7) Very notable particular case corresponds to the function ( ) .pK x x  We obtain then power mean:  
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1
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p N i

i

x x x x
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Power                                                                                                        (11) 

In mathematics, the power mean, also known as Hölder mean (named after Otto Holder), is an abstraction of the Pythagorean 

means including arithmetic, geometric, and harmonic means.  

 

3.3. Ordinary aggregation 2D SISO-filters 

The simplest and most common way to aggregate input data in 2D SISO-filter is to use a simple arithmetic and weighted mean: 

   
( , ) ( , )( , ) ( , )

ˆ ˆ( , ) ( , ) ,      ( , ) ( , ) ( , ) .  
i j i jm n M m n M

s i j f m n s i j w m n f m n
 

 Arithm WArithm    (12) 

Some extensions of the simple arithmetic filters (12) have been introduced as geometric and harmonic filters 



Information Technology and Nanotechnology – 2017 
Image Processing and Geoinformation Technology       805 

 

 

( , )
( , )

( , ) ( , )

( , )
( , )

1

( , )
( , )

1/ ( , )

( , )

( , )
( , )

ˆ( , ) ( , ) ( , ) ,    

ˆ( , ) ( , ) ( , )

i j
i j

m n M i j

i j
i j

N

m n M
m n M

w m n

w m n

m n M
m n M

s i j f m n f m n

s i j f m n f m n








 
   

  


 

   
  





Geo

WGeo

   (13) 

 

 

( , )
( , )

( , )

( , )

( , )

1

1

( , )
( , )

( , )

1( , )

( , )

ˆ( , ) ( , ) ( , ) ,    

( , )

ˆ( , ) ( , ) .
( , ) ( , )

i j
i j

i j

i j

i j

m n M
m n M

m n M

m n M

m n M

s i j f m n f m n

w m n

s i j f m n
w m n f m n














 
   

  

 








Harm

WHarm

   (14) 

3.4. Kolmogorov aggregation 2D SISO-filters  

Many extensions of the simple ordinary linear filters are defined as Kolmogorov filters 
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and as dual Kolmogorov filters 
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If ( ) pK x x  and 1( )
p

K x x   then we have the Hölder (or power) and the dual Hölder filters of the following forms: 
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This family is particularly interesting, because it generalizes a group of common filters, only by changing the value of p : 
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In particular, using Hölder filters we can construct new Kolmogorov-Lehmer filters as: 
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The next extensions of the Kolmogorov filters are based on (4): 
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3.5. The Heronian aggregation filters  

 The classical Heronian mean definition of two positive real numbers a  and b  are  

     , / 3 / 3.        a b a ab b aa ab bb     ArithHeron    (22) 

Hero of Alexandria is the Greek mathematician [5].  Along with the Heronian mean, we introduce the Heronian median as 

follows  

   , , , .a b aa ab bbMedHeron Med                                                                                                       (23) 

Let 
1 2( , ,..., )Nx x x  be an N -tuple of positive real numbers. An obvious way to generalize Eqs. (22)-(23) is by including inside 

the parentheses the square roots of all possible products of two elements. 

Definition 1. The 2-generalized Heronian mean and median of an N -tuple of positive real numbers 
1 2( , ,..., )Nx x x  are defined 

as  

 

2 1 2

      

2 1 2

2
( , ,..., ) ,   

( 1)

( , ,..., ) .      

N i j

i j

N i j
i j

x x x x x
N N

x x x x x








 
  

 MeanHeron

MedHeron Med

   (24) 

Now we can generalize this definition using k -th roots of all possible distinct products of k  elements of 1 2( , ,..., )Nx x x , again 

with repetition. The number of all such products corresponds to extracting k  elements from a bag of N , with replacement, 

where 
1

k

N kC  
 is the binomial coefficient. This determines the normalization factor.  

Definition 2. The Heronian k -mean and k -median of an N -tuple of positive real numbers 
1 2( , ,..., )Nx x x  are defined as  
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Obviously, 
1 (1,1,...,1)k

N k kC    ArithHeron . 

As we see, two types of aggregation operators ( Arith  and Med ) are used in (25) and (26). We can use an arbitrary 

aggregation operator  
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that gives a wide family of Heronian filters. Indeed, in the standard linear and nonlinear 2D-filters the square window 
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   of size N M M       2 1 2 1s s     is used, where 2 1M s  .  Obviously,  ( , ) ( . ) ( , )

( , )i j n m M i j
f n m


 

is an image block of the fixed size N M M   extracted from f  by moving window 
( , )M i j

 at the position ( , )i j . Our idea 

consists in ordering the pixels according to Radix- s  number system:  
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 where the map ( , )n m r  has the following form ( ) ( )r M n s m s    . For example, for the window of size 3 3  we have 

( 1, 1) 0,   ( 1,0) 1,   ( 1,1) 2,        (0, 1) 3,  (0,0) 4,  (0,1) 5,  (1, 1) 6,  (1,0) 7,  (1,1) 8.         Here  

3,  1M s   and 3( 1) ( 1)r n m    . Now we define a product of k  pixels 
( , ) 1 ( , ) 2 ( , )( ) ( )... ( )i j i j i j kf r f r f r  from the image block 

   ( , ) ( , )1 ( . ) ( , )
( ) ( , )

N

i j i jr n m M i j
f r f n m

 
 . Using this product we define the generalized aggregation Heronian filter as 
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In particular cases, we have the following Heronian filters.  

1) The arithmetic k -Heronian filter 
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2) The median k -Heronian filter 
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MedHeron Med    (30) 

3) The Kolmogorov-Heronian filter 
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KolmHeron Arith

   (31) 

It is easy to see that 
1 2

1 2            

...
k

k

k
i i i

i i i

x x x
  

      is a symmetric polynomial in the variables 
1,..., Nx x . There are a few types of 

symmetric polynomials in variables 
1,..., Nx x  , which that are associated new symmetric means. 

 

3.6. Symmetric aggregation filters  

Any monomial in 1 2, ,..., Nx x x
 
can be written as 1 2

1 2 ... Npp p

Nx x x , where the exponents ip  are natural numbers (possibly zero); 

writing  1 2, ,..., Np p pp  this can be abbreviated to 1 2

1 2 ... Npp p

Nx x xp
X . If 1 2 ... Np p p p     then we write 

1 2

1 2 ... N
p pp pp

Nx x xp
X . 

Definition 3. The monomial symmetric polynomial is defined as the sums of all monomials 
q q

X , where q  ranges over all 

distinct permutations of p :  

1 2 ( )( ) ( )

1 2 1 2( , ,..., ) ... . N

N

pp pp

N N

S

x x x x x x
 



 p
Mon                                                                                                       (32) 

where NS  is the set of all permutations of  1 2, ,..., Np p p . These monomial symmetric polynomials form a vector space basis: 

every symmetric polynomial can be written as a linear combination of the monomial symmetric polynomials. 

Definition 4. Let 1 2, ,..., Nx x x  be positive real numbers and  1 2, ,..., N

Np p p R p . The p -Muirhead symmetric polynomial 

[6] is defined by  

1 2

1 2 (1) (2) ( )( , ,..., ) ... ,N

N

pp pp
N N

S

x x x x x x  


 p
Mui                                                                                                            (33) 

For example,  

 

1 2

1 2 2

(1,0,...,0) 1 2 1 2

1

(1,1,...,1) 1 2 1 2 1 2

(1,1,...,1,0...,0) 1 2
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N i N
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N N N
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Mui Her 1 2( , ,..., ).     k Nx x xon

   (34) 
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For each nonnegative integer 0 k N   the elementary 
 1 2( , ,..., )I

k Nx x xEl
 
and homogeneous 

1 2( , ,..., )I

k Nx x xHom  symmetric 

polynomials
 
are the sums of all distinct products of k  distinct variables: 

   
1 2 1 2

1 2 1 2

1 2 1 2

.... ....

, ,..., ,  , ,...,         
k k

k k

k k
k N r r r k N r r r

r r r r r r

x x x x x x x x x x x x
     

    El Hom    (35) 

We then define 
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q q
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  El El Hom Hom    (36) 

To each of polynomial  
1 2 1 2, ,..., , ,...,, ,

N Np p p p p pMon Mui  
1 2 ... ,

rk k kEl  
1 2 ... rk k kHom we will associate normalized symmetric function:  
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   (37) 

 We obtain four families of a generalized symmetric means: 
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   (38) 

where 1 2 ... ,rk k k k    and 1 2 ... .Np p p p    Using generalized symmetric means, we can construct the following 

families of symmetric MonArith -, MuiArith -,  ElMean- and HomMean-filters:  

 

 
 

( , ) ( , )

1 2

( , )
1

( )

1 2 ( , )
( , )

1

( )( ) ( )

( , ) ( , ) ( , ) (

,...,

ˆ( , ) , ,..., | ( , ) ( ) =       

1
(1) (2) ( ) =

1,...,1

l

i j i j

N

N

i j N
N

N
pp

N i j
m n M M

l
S

pp pp
i j i j i j

M S
p p

s i j p p p f m n f l

f f f N f





 










       
    

 
   

 

MonArith Arith

Arith
Mon

( )

, )

1

( )l

N

N
pp

i j

S l

l


 

 

   (39) 

   

        
 

( , ) ( , )

1 2

( , )
1

1 2 ( , )
( , )

1

( , ) 1 ( , ) 2 ( , ) ( , )

,...,

ˆ( , ) , ,..., | ( , ) ( ) =

1
( ) ( ) ( ) ( )

1,...,1

l

i j i j

N

N l

i j N
N

N
pp

N i j
m n M M

l
S

p pp pp
i j i j i j N i j

M S lp p

s i j p p p f m n f l

f r f r f r f l








       
    

 
       

 

MuiArith Arith

Arith
Mui 1N

N

p

S 

 

   (40) 

   

   

( , ) 1 2

1 2

( , )

( , ) 1 ( , ) 2 ( , )
( , ) ...

( , ) 1 ( , ) 2 ( , )

....

1 2
( , )

ˆ( , ) | ( , ) ( ) ( ) ( ) .     

( ) ( ) ( ) / 1,...,1 ,

ˆ( , ) ; ... |

i j kt

k

i j

k
i j i j i j k

m n M r r r

k
i j i j i j k

r r r

q
m n M

k

s i j k f m n f r f r f r

f r f r f r

s i j q k k k

   

  



   
  

 





ElArith Arith

El

ElArith   

   

1 2

1 2

( , ) 1 ( , ) 2 ( , )
...

1

( , ) 1 ( , ) 2 ( , )

....1

( , ) ( ) ( ) ( )

( ) ( ) ( ) / 1,...,1 ,

t

t
kt

t t

k

q

k
i j i j i j k

r r r
t

q

k
i j i j i j k

r r rt

k

f m n f r f r f r

f r f r f r

  


  

       

 
   

 





Arith

El

   (41) 



Information Technology and Nanotechnology – 2017 
Image Processing and Geoinformation Technology       809 

   

   

( , ) 1 2

1 2

( , )

( , ) 1 ( , ) 2 ( , )
( , ) ...

( , ) 1 ( , ) 2 ( , )

....

1 2
( , )

ˆ( , ) | ( , ) ( ) ( ) ( ) .     

( ) ( ) ( ) / 1,...,1 ,

ˆ( , ) ; ...

i j k

k

i j

k
i j i j i j k

m n M r r r

k
i j i j i j k

r r r

m n M

k

s i j k f m n f r f r f r

f r f r f r

s i j q k k k

   

  



   
  

 





HomArith Arith

Hom

HomArith   

   

1 2

1 2

( , ) 1 ( , ) 2 ( , )
...

1

( , ) 1 ( , ) 2 ( , )

...1

| ( , ) ( ) ( ) ( )

( ) ( ) ( ) / 1,...,1 .

t

t
kt

t t

kt

q

k
q i j i j i j k

r r r
t

q

k
i j i j i j k

r r rt

k

f m n f r f r f r

f r f r f r

  


  

       

 
  

 
 





Arith

Hom

   (42) 

As we see, aggregation operator Arith  is used in (39)-(42). We can use here an arbitrary aggregation operator Aggreg . Some 

of similar filters can find in [7-10]. 

  
        a) Original image/                    b) Noise images, PSNR=21.83. 

   
        a) Original image.                     b) Noise  images, PSNR=28.24. 

  

c) ,Aggreg Mean PSNR=32.3.  d) ,Aggreg Med PSNR=31.2.                                                 

   
c) ,Aggreg Mean PSNR=31.3.    d) ,Aggreg Med PSNR=29.5.                                                   

  

e) ,Aggreg Min PSNR=27.5.  f) ,Aggreg Geo PSNR=28.6. 

  

 e) ,Aggreg Min PSNR=19.9.      f) ,Aggreg Geo PSNR=28.7. 

Fig. 2. Original (a) and noise (b) images.  

Noise: “Salt-Pepper PD”. Denoised images  (c)-(f). 

Fig. 3. Original (a) and noise (b) images.  

Noise: “Laplasian PDF”. Denoised images  (c)-(f). 

4. Results and Discussion 

The following generalized aggregation Heronian filtering 
2

MeanHeron , 
2

MedHeron , 
2

MinHeron , 
2

GeoHeron  for 

| | 5 5N M M    M  has been applied to noised 256x256 gray level “Dog” images (Figures 2b,3b). The denoised images 

are shown in Figures 2–3. In Fig.4-5, we present examples of MonArith -, MuiArith -,  ElMean- and HomMean-filtering. All 

filters have very good denoising properties. This fact confirms that further investigation of these new filters is perspective. 

Particularly, very interesting is a question about the types of noises, for which such filters are optimal. 

5. Conclusion 

We developed a new theoretical framework for image filtering using aggregation operators. The main goal of the work is to 

show that aggregation operators can be used to solve problems of image filtering in a natural and effective manner. Some 

properties of a nonlinear aggregation filters are exploited in this paper.  Unlike the linear masking filter, they avoid amplification 

thanks to the nonlinearity of the response to luminance variations; unlike the classical linear and median filters, they are able to 

sharpen even small details as its impulse response demonstrates.  
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        a) Original image.                     b) Noise images, PSNR=23. 

  
        a) Original image.                     b) Noise images, PSNR=23. 

  

         c) MonMean, PSNR =29.          d) MuiMean, PSNR =28. 

   

         c) MonMean, PSNR =30.               d) MuiMefn, PSNR =31. 

  

          e) ElMean, PSNR =28.              f) HomMean, PSNR =27. 

 

  

               e) ElMean, PSNR =31.            f) HomMean, PSNR =32. 

Fig. 1. Original (a) and noise (b) images.  

Noise: “Salt-Peper PD”. Denoised images  (c)-(f). 

Fig. 2. Original (a) and noise (b) images.  

Noise: “Laplasian PDF”. Denoised images  (c)-(f). 
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