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Abstract. Graphene is a two-dimensional allotropic form of carbon, with atoms combined into 

a hexagonal crystal lattice, forming a layer one atom thick. Graphene  possessing exceptional 

optical, mechanical, physical and electrophysical properties. This article details some of the 

conductivity in graphene. The conductivity of the two-layer graphene was measured by special 

mathematical models, with conductivity dependent on the voltage at the gate at different 

temperatures. Conductivity is faced with a jump at zero temperature and a sharp, standard rise 

in properties at room temperature, as shown clearly in the resulting electronic spectrum. 

1. Introduction

Graphene is a two-dimensional allotropic form of carbon, which is formed by a layer of carbon atoms

one atom thick, located in sp² hybridization and connected via σ and π bonds to a two-dimensional

hexagonal crystal lattice (Fig. 1). The distance between adjacent atoms of the crystal lattice is

graphene is 0.142 nm. Graphene can be represented as one atomic plane of a natural carbon species -

graphite, separated from a bulk crystal [1]

Figure 1.  Structure diagram of the graphene crystal lattice. 

For a long time, scientists could not get stable graphene samples. The atomic plane of graphene 

sought to minimize its surface energy and curled up, transformed into various allotropic forms of 

carbon - amorphous carbon, carbon nanotubes and fullerenes[2]. 
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Only in 2004, a group of scientists from the University of Manchester and the Institute of 

Microelectronics Technology Problems in Chernogolovka under the guidance of Andre Geim and 

Konstantin Novoselov obtained graphene using ordinary tape and tape. The graphite synthesized by 

them was transferred onto a 300 nm thick silicon oxide substrate. Due to light interference, sections of 

different plate thicknesses had different colors[3]. The thinnest sections of this plate were almost 

colorless. Among them, using atomic force microscopy, the structure of one atomic plane of graphene 

was discovered[4]. 

The new carbon modification has unique properties. The mechanical strength of graphene is twice 

that of steel. The thermal conductivity of graphene is 10 times that of copper. 

Graphene is characterized by a linear law of electron dispersion. Quantums of a light wave or 

electromagnetic radiation - photons, which are massless particles that propagate in space at the speed 

of light, have the same energy dependence on momentum. In graphene, electrons, like photons, have 

no mass. But their charge is not equal to zero and the speed of their movement is 300 times less than 

that of c 

Due to the linear dispersion law, graphene is a semimetal, which is a semiconductor with zero band 

gap and conductivity not inferior to the conductivity of copper. The mobility of electron graphene is 

greater than that of all known materials (100 times greater than that of silicon). 

Graphene also has unique optical properties[5]. The transmission coefficient of the light wave for 

graphene in the region of visible light is described by the formula: 

𝑇 ≈  1 –  𝜋𝛼 ≈  97,7 %,                                               (1) 

where α is the fine structure constant. 

Thus, graphene absorbs only about 2.3% of the light waves of the visible radiation range. That is, 

graphene plates are almost transparent. 

The transparency, good electrical conductivity and elasticity of graphene make it a promising 

material for the creation of solar cells and touch displays. In all respects, graphene is much better 

suited for such devices than the indium tin oxide currently used[6,7]. 

To calculate the electron current density in Graphene, we use an analog of the Landauer-Buttiker 

formula for the two-dimensional case, in other words, we calculate the difference in the fluxes of 

electrons moving from the source to the sink and back:  

2. Calculation of conductivity and current density

To calculate the electron current density in Graphene, we use an analog of the Landauer-Buttiker

formula for the two-dimensional case, in other words, we calculate the difference in the fluxes of

electrons moving from the source to the sink and back[8]:

       𝑗 =
𝑒

𝜋2ℏ2 ∫ 𝑣𝑥𝐷[𝑓(휀(𝑝), 𝜇) − 𝑓(휀(𝑝), 𝜇 − |𝑒|𝑉𝐷)] 𝑑𝑝𝑥𝑑𝑝𝑦,     (2) 

in which 𝑓(휀(𝑝), 𝜇) and 𝑓(휀(𝑝), 𝜇 − |𝑒|𝑉𝐷)-are the electron distribution functions at the source,

respectively 𝑣𝑥 =  𝑑휀/𝑑𝑝𝑥–  is the group velocity of the electron, and the transparency coefficient of

the barrier D depends from the energy and momentum of a flightless particle. In our model, we neglect 

the tunneling effect (the calculation of this phenomenon has already been done before us), therefore, 

the transmission coefficient can take values only 0 or 1, depending on the energy and momentum of 

the particle. We rewrite (2) in a more convenient form 

 𝑗 =
𝑒

𝜋2ℏ2 ∫ 𝐷(휀, 𝑝𝑦)[𝑓(휀, 𝜇) − 𝑓(휀, 𝜇 − |𝑒|𝑉𝐷)] 𝑑𝑝𝜀𝑑𝑝𝑦,       (3) 

If |𝑝𝑦| ≤ pmin,, then the incident particle can be reflected from the barrier only if it reaches the

minimum of the band structure, i.e. for 휀 −  𝑒𝜙 ≤  휀𝑚𝑖𝑛. But this condition coincides with the

requirement (휀 ≤    휀𝑚𝑖𝑛 + 𝑒𝜙), therefore, all particles with momenta |𝑝𝑦| ≤ pmin are simultaneously

included in the current transfer process if their energy 휀 ≥  휀_𝑚𝑖𝑛 +  𝑒𝜙. 

If | p_|𝑝𝑦|  ≥  𝑝𝑚𝑖𝑛, then the incident particle will no longer reach the minimum of the band

structure, and therefore reflection will occur only if it loses its entire longitudinal momentum px. This 

will happen when 휀 − 𝑒𝜑 =  휀(𝑝𝑥 =  0, 𝑝𝑦), or, what is the same, when |𝑝𝑦|  =  𝑝(휀 −  𝑒𝜑).. Here

𝑝(휀) – is the function inverse to the energy spectrum (we mean the branch with |𝑝𝑦|  ≥  𝑝𝑚𝑖𝑛).
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Summarizing the above reasoning, we can “cut off” the integration limits in the expression for the 

current (휀 ≤    휀𝑚𝑖𝑛 + 𝑒𝜙),leaving only those momenta and energies for which the transmission 

coefficient is unity: 

                             𝑗 =
|𝑒|

𝜋2ℏ2 ∫ 𝑑휀
∞

𝜀𝑚𝑖𝑛+𝑒𝜑 ∫ 𝑑𝑝𝑦[𝑓(휀, 𝜇) − (𝑓(휀, 𝜇) − |𝑒|𝑉𝐷)]
𝑝(𝜀 − 𝑒𝜑)

−𝑝(𝜀 − 𝑒𝜑)
,                         (4) 

Or by integrating over the transverse momentum explicitly 

                          𝑗 =
2|𝑒|

𝜋2ℏ2 ∫ 𝑝(휀 −  |𝑒|𝜑)
∞

𝜀𝑚𝑖𝑛+𝑒𝜑
[𝑓(휀, 𝜇) − 𝑓(휀, 𝜇)]𝑑휀                                                (5) 

This is the final formula for calculating the current. Note that in all the above arguments, we 

secretly assumed that for electrons in the upper gate region a barrier of height 𝑒𝜑 >  0 was created. 

For 𝑒𝜑 <  0in (4), energy integration should be carried out not from 휀𝑚𝑖𝑛 + 𝑒𝜑,but from  휀𝑚𝑖𝑛,in the 

integrand expression should be 𝑝(휀). 

In the case of 𝑒𝜙 >  0, in expression (5) it is convenient to make the change of variable 휀˜ =  휀 −
𝑒𝜑, which can be interpreted as the transfer of the integration domain to the contacts[8]. The 

expression for the current takes the form: 

                               𝑗 =
2|𝑒|

𝜋2ℏ2 ∫ 𝑝(휀˜)
∞

𝜀𝑚𝑖𝑛
[𝑓(휀˜, 𝜇 − 𝑒𝜑) − 𝑓(휀˜, 𝜇 − 𝑒𝜑 − |𝑒|𝑉𝐷)]𝑑휀                           (6) 

Now, calculating the response to an infinitesimal bias voltage 𝑑𝑉𝐷 is not difficult: assuming that 

the Fermi functions in the contacts are shifted on the energy scale by an infinitely small value |𝑒|𝑑𝑉𝐷, 

we can expand 

                             𝑓(휀˜, 𝜇 − 𝑒𝜑) − 𝑓(휀˜, 𝜇 − 𝑒𝜑 − |𝑒|𝑉𝐷) =
𝜕𝑓

𝜕𝜀˜
|𝑒|𝑑𝑉𝐷,                                              (7) 

and at low temperatures 𝑇 ≪ µ we can assume that 𝜕𝑓/𝜕휀˜ =  𝛿(˜휀 − (µ − 𝑒𝜑)).This leads to the 

following expression for the conductance 𝐺 =  𝑑𝑗/𝑑𝑉𝐷 (we will also call this quantity conductivity, 

although it is measured in (Ом ·  м)−1, this should not cause misunderstanding): 

                                                          𝐺 =
2𝑒2𝑃(𝜇−𝑒𝜑)

𝜋2ℏ2 .                                                                            (8) 

Due to the fact that expression (8) contains the function 𝑝(µ − 𝑒𝜑), defined only for 휀 ≥  휀𝑚𝑖𝑛 and 

equal to 𝑃𝑚𝑖𝑛, the conductivity based on bilayer graphene must experience a jump equal to 

                                          ∆𝐺 =
𝑒2

ℏ

𝑔𝑘𝑚𝑖𝑛

𝜋
.                                                                                 (9) 

This jump occurs when the bottom of the conduction band touches the Fermi level in the source 

contact, i.e. for µ =  𝑒𝜙 + 휀𝑚𝑖𝑛.For the band gap ∆ =  0.2 эВ, the wave vector 𝑘𝑚𝑖𝑛 =  4 нм−1, 

which corresponds to the jump in conductivity ∆𝐺 =  1.25 ·  104(Ом ·  м)−1.The inverse resistance 

jump turns out to be (𝐺𝑊)−1(𝑊 is the width of the graphene tape) and can take any value, unlike one-

dimensional systems, where it was equal to 2ℎ/𝑒2. In principle, formula (8) together with (9) can be 

used to analytically calculate the conductivity as a function of the gate voltage at zero temperature. 

This problem, however, reduces to solving an algebraic equation of the fourth degree; the results of the 

solution are not visual. At finite temperatures, a semi-analytical calculation of conductivity is 

possible[9]. 

We substitute the expansion for the current expression: 

                                휀𝑏
𝜑−𝑉𝐵𝐺

𝑑𝑏
+ 휀𝑡

𝜑−𝑉𝑇𝐺

𝑑𝑡
4𝜋|𝑒|𝛴𝑒 − 𝛴ℎ                                             (10) 

integrate by parts and divide by voltage drop 𝑑𝑉𝐷𝑠: 

𝐺 =
𝜕𝑗

𝜕𝑉𝐷𝑠
=

2𝑒2𝑔𝑝𝑚𝑖𝑛

(2𝜋ℏ)2 𝑓𝐹(휀𝑚𝑖𝑛, 𝜇 − 𝑒𝜑) +
2𝑒2𝑔

(2𝜋ℏ)2 ∫ 𝑓𝐹(휀(𝑝), 𝜇 − 𝑒𝜑)𝑑𝑝
∞

𝑝𝑚𝑖𝑛
                        (11) 

The obtained expression consists of two parts - the first line corresponds to the isotropic shift of the 

spectrum of two-layer graphene and leads to the existence of a conductivity jump at zero temperature, 

it disappears at 𝑝𝑚𝑖𝑛  =  0. The second term corresponds to the usual quadratic spectrum 휀(𝑝)  ∼  𝑝2. 
In the case of an arbitrary temperature, the Fermi distribution function in explicit form begins to enter 

the formulas for the concentration and current; moreover, we must take into account the contribution 

of holes to the total charge density[10,11]. 

In this case, for the charge density in the channel 𝑛𝑐ℎ =  𝛴𝑒 − 𝛴ℎ, we should write: 

                 𝑛𝑐ℎ(𝑒𝜑) =
2

𝜋ℏ2 ∫ [𝑓(휀(𝑝), 𝜇 − 𝑒𝜑) − 𝑓(휀(𝑝), −(𝜇 − |𝑒|𝜑))]𝑝𝑑𝑝,
∞

𝑞𝑚𝑖𝑛
                              (12) 
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where the second term under the integral sign corresponds to the contribution of holes to the charge 

density. 

The smooth channel equation in this case is modified: 

                                           
𝜀𝑡

4𝜋𝑑𝑡
(𝑉𝐺 − 𝜑) =

|𝑒|

2
[𝑛𝑐ℎ(𝑒(𝜑 + 𝑉𝐷)) + 𝑛𝑐ℎ(𝑒𝜑)]                                   (13) 

It is now interesting to trace the evolution of conductivity and linear current density as a function of 

the gate voltage with changing temperature - in Fig. 2 and fig. Figure 3 shows graphs for three 

temperatures: helium 𝑇 =  4 𝐾, nitrogen 𝑇 =  77 𝐾, and room 𝑇 =  300 𝐾. 

 
Figure 2.  The dependence of the two-layer graphene conductivity on the cross-gate voltage at 

different temperatures. 

 
Figure 3.  The dependence of the current density  in two-layer graphene on gate voltage at different 

temperatures. 

 

Analyzing the obtained curves, we see that the ratio of the currents on and off on two-layer 

graphene is of the order of 10 at room temperature and a gate voltage variation range 0.5 В V. That is 

why the methods for increasing the band gap in two-layer graphene attract considerable attention of 

researchers. we can say that the characteristic at room temperature inherits from the jump in 

conductivity at 𝑇 =  0 a high slope. In the next subsection, we estimate this value analytically. 

When the Fermi energy coincides with the temperature, it can be expressed in the following 

formula[11]: 

                                                                 |𝑒|∆𝜑 = 𝑇                                                                           (14) 

If at zero temperature the jump in conductivity is equal to ∆G, then the derivative of conductivity at 

the point of the jump at a nonzero temperature can be estimated as 

                                                                        
𝑑𝐺

𝑑𝑉𝑉
=

∆𝐺

∆𝑑𝐺
                                                    

After this, the expression for the concentration of charge carriers takes the form 

                                ∑ (|𝑒|∆𝜑, 𝑇)𝑒 =
2

𝜋ℏ2𝑣2 ∫ (1 + 𝑒𝑥𝑝 {
(𝑞−𝑞𝑚𝑖𝑛)2

2𝑚𝑣𝐹
2𝑇

− 1})
−1

𝑞𝑑𝑞,
∞

𝑞𝑚𝑖𝑛
                         (15) 

The integral in (3.19) is taken analytically. After substituting its values in the formula for the 

connection of the potentials ∆V G and ϕ, we obtain 
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|𝑒|∆𝑉𝐺 = 𝑇 +
8𝑒2𝑑𝑡

𝜀𝑡ℏ2 . {ln(1 + 𝑒) 𝑚𝑇 + 091𝑞𝑚𝑖𝑛√
2𝑚𝑇

𝑣𝐹
2 } ,      (16) 

0.91 is the approximate numerical value of the integral 

∫
𝑑𝑡

1 + 𝑒𝑡2−1

∞

0

. 

In short form, the voltage at the gate 

∆𝑉𝐺 = 𝑎𝑇 + 𝑏√𝑇,    (17) 

where 𝑎 and 𝑏 are functions of both the spectrum of bilayer graphene and the structure parameters. For 

the above structural parameters (temperature is expressed in electron volts) 

∆(|𝑒|𝑉𝐺) = 4.266𝑇 + 0.8775√𝑇   , (18) 
𝑑𝐺

𝑑𝑉𝑉
=

∆𝐺(𝑇=0)

4.266𝑇+0.8775√𝑇  
  ,   (19) 

Figure 4.   Comparison of the estimated maximum slope of the characteristic (dashed line) and the 

exact numerical calculation (points). 

We note that the presence of a term proportional to  √𝑇 in the denominator occurs again due to the 

presence of an isotropic shift along the momentum axis in the spectrum of bilayer graphene. 

In fig. Figure 4 shows a comparison of the steepness calculated by the estimation formula (solid 

line) with the values obtained by an exact numerical calculation. The slope value for two-layer 

graphene with the indicated structure and spectrum parameters is 55 · 10 3 (Ohm · m · V) −1, which is 

an order of magnitude greater than the similar value for the type “silicon on the insulator” (5 · 10 3 

(Ohm · m · V ) −1), which is considered as one of the most promising in silicon electronics[11,12,13]. 

3. Results

The aim of this work is to study the photon effect on graphene and carbon nanotubes. 

In considering the photon effect on graphene and carbon nanotubes, the following conclusions were 

drawn: 

• The high transmission coefficient of the light wave of graphene in combination with good

electrical conductivity and elasticity make it a promising material for the creation of solar cells and 

touch displays. 

• Only semiconductor modifications of graphene have optical properties.

• Graphene semiconductors are the best electronic emitters. The reason for this is its high electrical

conductivity. 

• Due to the sharp tip of graphene, high emission is possible even when low voltage is applied. The

resulting emission current has a high density and extreme stability. 

• Owing to their optical and semiconductor properties, subminiature size, good electrical

conductivity, high emission characteristics and the ability to attach chemical graphene radicals, they 

have a wide range of applications in optoelectronics, measurement technology, chemical technology 

and biomedicine. Therefore, further detailed study of the properties of graphene is necessary. 
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• The problem of developing economical technologies for the mass production of graphene having 

predetermined properties and controlled sizes is one of the most important tasks of modern science. 

 

4. Conclusion 

To determine the promising capabilities of graphene-based devices, mathematical models are widely 

used due to technological adherence to the manufacture of real samples. The graphene conductivity 

model is explained by the graphene resistance depending on the voltage at the control electrode. It 

turns out that the maximum resistance resulting from the spread of a strong electron hole depends 

poorly on temperature. The characteristics of the resulting electronic spectrum show that the 

conductivity at zero temperature faces a jump, and this indicates the sharp and standard height of the 

properties at room temperature. 

Dual-wall graphene is used because of its rigidity and flexibility and is useful for devices that depend 

on the effect of photons on the graphene because the photon is emitted under the influence of the 

electric field by high magnetic fields. 
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