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Abstract. A two dimensional steady-state melting problem is numerically simulated. This task 

arose during the Selective laser melting (SLM) additive process technology modelling project. 

Initial problem is formation of residual stresses and, as a consequence, appearance of 

accumulated deformations (inherent strains) and distortion of final production shape. As 

solution of this initial problem I suggest development of own appropriate software tool. 

Development process was divided on 5 stages. Stage 1 is to model the geometric size of the 

molten bath. A comparison of the results obtained with in OpenFOAM (laserConvBC) and 

results from similar article. 

1. Introduction 

Selective laser melting (SLM), also known as direct metal laser sintering (DMLS) or laser powder bed 

fusion (LPBF), is a rapid prototyping, 3D printing, or additive manufacturing (AM) technique 

designed to use a high power-density laser to melt and fuse metallic powders together. In SLM, the 

three-dimensional model of the manufactured part is divided into layers with a thickness from 20 to 

100 microns. In each layer, a local heat source (laser beam, etc.) melts metal powder particles and 

forms "tracks" (welded tracks, welds) which are located at a certain distance from each other. The 

process of manufacturing parts of SLM includes the heating, melting and solidification of the material 

by a moving heat source, such as a laser, layer by layer. As a result, different parts of the production 

component get different reheat and cool cycles. Spatially modified thermal cycles lead to the 

formation of residual stresses and, as a consequence, to appearance of accumulated deformations 

(inherent strains) and distortion of final production shape. 

 

2. General problem statement 

General problem is software tool development that implements a multiscale approach based on the 

finite element method, which provides faster determination of residual stresses and distortions for 

SLM production components. Residual stresses and distortion determination approach includes the 

calibration of the heat source, the analysis of scanning strategies (shading), the generation of the so-

called “mechanical layer equivalent” and its integration into the accelerated structural analysis. 

A similar approach was recently implemented in the commercial software such as Simufact Additive 

by MSC Software. As the practice of using the Simufact Additive has shown, the simulation results 

are in very good agreement with experimental measurements. The usage of commercial software with 

closed source code brings following limitations: closed source code, complexity/impossibility of 

detailed model correction. 

 

3. General problem solution stages 

Stages of the proposed software development are follows: 
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 Stage 1. Solving the problem of temperature distribution in the molten bath in a stationary 

setting. Depending on the shape and curve of the energy distribution of the laser beam, the 

melt bath geometry is modeled by solving the heat equation with the substrate/melted layer 

boundary conditions, unmelted powder, inert gas environment and based on the finite volume 

method. The solution is the stationary state equation and should give a three-dimensional 

description of the melting isotherm. 

 Stage 2. Solving the temperature distribution problem in the alloyed layer in a quasi-dynamic 

formulation depending on the technological parameters (speed and beam scanning step), 

descriptions of the geometry of the moving melt bath and the temperature in the melt bath 

found in the first stage. This allows us to describe the front of the transition from almost zero 

conductivity (outside the conduction front) to conductivity immediately ahead of the melt 

front and to determine the boundaries of the "equivalent mechanical layer" for the next stage. 

 Stage 3. Solving coupled thermal problems and structural analysis problems in the top row of 

finite elements of an “equivalent mechanical layer” containing a fused layer of material. 

Determination of accumulated deformations in the "equivalent mechanical layer". 

 Stage 4. Solving the problem of structural analysis for finite volumes of other lower layers. 

Calculate accumulated deformations load from the “equivalent mechanical layer”. Calculate 

the elastic response from the applied load. 

 Stage 5. As a result of the solution, the thermal displacements of the finite volume model are 

determined. Inverting these offsets applied already to the nodes of the STL-file of the 

geometric model of the production component, i.e. Pre-adjusting the model for negative 

values of these displacements before generating the control program for building a part, it is 

possible to level the effects of thermal stresses. 

This paper describes the results of Stage 1. In this stage, I simulated the temperature distribution and 

the melt pool borders, during particles melting with a laser beam. 

 

4. Temperature distribution in the molten bath. Problem description 

This paper presents the results of a simulation of the temperature distribution with OpenFOAM library 

and a comparison of the obtained results with similar works [1, 2], that used commercial tools 

COMSOL, Ansys and shows proper agreement with experimental results. Several existing studies [3, 

4, 5, 6] have employed basic heat-transfer model to investigate the thermal behavior in SLM of metal 

powders such as stainless steel and titanium alloys and have proposed techniques to simulate the 

addition of layers with time. 

Figure 1 shows the OpenFOAM 3D finite volume model. The powder layer (1E-6 x 1E-6 x 5E-8 m) 

was meshed with 1.8E6 (300 x 300 x 20) hexahedron elements. 

 
Figure 1. Finite Volume Model. 

 

The following assumptions are made in this simulation: 

 The composite powder bed was assumed to be homogeneous and continuous. 

 The heat flux from the laser beam was modelled as Gaussian-distributed heat flux and was 

given directly on the top of the composite powder bed. 

 The simulation did not take into account heat loss at the phase transition 
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 The laser spot was assumed to have a circular shape. 

 The convective heat transfer coefficient between the environment and the powder bed was 

assumed to be a constant. 

 

5. Boundary conditions 

Boundary conditions are shown in the Table 1. 

 

 Table 1. Boundary conditions. 

Value name Designation Value 

Initial temperature, [K] T_0 300 

Heat Transfer Coefficient for heating, [W/m^2/K] HTCheating 150 

Scanning speed, [mm/s] heatingTime 1000 

Laser power, [W] power 350 

Spot size X, [m] sigmaX 7E-8 

Spot size Y, [m] sigmaY 7E-8 

Constant heat conduction, [W/(m*K)] kValue 10 

Material thermal diffusivity (Aluminium powder), 

[m^2/s] 
DT 5E-06 

 

6. Computational results and analysis 

Figure 2 shows the OpenFOAM simulation results, Figure 3 shows simulation results of COMSOL 

[1]. Parameters such as the size of the molten bath and the temperature distribution were compared 

(see Table 2). 

It is assumed that in order to fully melt an alumina particle, the maximum temperature induced by the 

laser radiation should be higher than the melting point of alumina (2040° C). 

 

 Table 2. Results comparison.  

Value name COMSOL model OpenFOAM 

model 

Difference 

(COMSOL=100%) 

Molten bath length, [µm] 165 190 +15% 

Maximum temperature, [° C] 3380 3000 -11% 

 

OpenFOAM results shows enough proper agreement with COMSOL model [1] results. Small 

differences are caused by different implementation of computational models in OpenFOAM and in 

COMSOL. 

                                        
Figure 2. OpenFOAM laser convection 

simulation. Temperature distribution (K). 

Figure 3. COMSOL laser convention 

simulation [1]. Temperature distribution (°C). 

\
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7. Conclusion 

The current paper shows a good agreement between the results obtained during the simulation in 

OpenFOAM and in COMSOL [1]. Note that the results of the work [1] showed proper agreement with 

experimental results. Thus, the OpenFOAM model [7] can be used for further residual stresses  model 

development. 
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