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In this paper, we investigate the elastic inverted pendulum with hysteretic nonlinearity (a back-lash) in the sus-

pension point. Namely, the problems of stabilization and optimization of such a system are considered. The al-

gorithm (based on the bionic model) which provides the effective procedure for finding of optimal parameters is 

presented and applied to considered system. The results of numerical simulations, namely the phase portraits 

and the dynamics of Lyapunov function, are also presented and discussed. 
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Introduction 

As is known, the problem of inverted pendulum plays a central role in the control theory [1-11]. 

In particular, the problem of inverted pendulum (as a test model) provides many challenging 

problems to control design. Because of their nonlinear nature, pendulums have maintained their 

usefulness and they are now used to illustrate many of the ideas emerging in the field of nonlin-

ear control [12]. Typical examples are feedback stabilization, variable structure control, passivi-

ty-based control, back-stepping and forwarding, nonlinear observers, friction compensation, 

and nonlinear model reduction. The challenges of control made the inverted pendulum systems 

a classic tool in control laboratories. It should also be noted that the problem of stabilization of 

such a system is a classical problem of the dynamics and control theory. Moreover, the model 

of inverted pendulum is widely used as a standard for testing of the control algorithms (for PID 

controller, neural networks, fuzzy control, etc.). 

According to control purposes of the inverted pendulum, the control of inverted pendulum can 

be divided into three aspects. The first widely researched aspect is the swing-up control of in-

verted pendulum [13-15]. The interesting and important results on the time optimal control of 

the inverted pendulum were obtained in [13, 15]. In particular, in [15], the optimal transients 

(taking into account the cylindrical character of the state space of the system under control) 

were built for different values of the parameters and constraints on the control torque. The sec-

ond aspect is the stabilization of the inverted pendulum [16, 17]. The third aspect is the tracking 

control of the inverted pendulum [18]. 

In practice, stabilization and tracking control are more useful for application. 

A backlash in the suspension point is a kind of hysteretic nonlinearity. The hysteretic phenome-

na (especially in the form of control parameters) play an important role in such a fields as phys-

ics, chemistry, biology, economics, etc. It should also be pointed out that the hysteretic phe-

nomena are insufficiently known in our days. The purpose of this paper is investigation of the 

possible stabilization (in a vicinity of vertical position) of the elastic inverted pendulum in the 

presence of a backlash in the suspension point together with investigation of various aspects of 

such a dynamical system. 
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Problem 

Let us consider the model of stabilization of the inverted pendulum in the vicinity of the vertical 

position. The pendulum is considered as an elastic rod which is hingedly fixed on the cylinder. 

Motion of the cylinder is excited by the horizontal motion of a piston (see the Fig. 1). 

 

Fig. 1. Model of elastic inverted pendulum: geometry of the problem 

Mathematical model of a similar mechanical system was considered in [19]. Investigation of the 

dynamics of an elastic inverted pendulum was carried out in [20-23]. 

Here  yx,  is the coordinates of an elastic rod with mass m and density ρ; the Ox axis coincides 

with a tangent to rod's profile in the suspension point; θis an angle of slope for the coordinates 

of a rod, and I is a centroidal moment of inertia of the rod's section; 

  xX ,  is the Cartesian coordinate system connected with a considered mechanical system 

(namely the X coordinate determines the position of the piston in a cylinder), M is a mass of a 

cylinder with length L, and F is a force joined to a piston with mass mp (such a force is treated 

as control). 

Hysteretic nonlinearity 

In the following consideration, we use the operator technique for the hysteretic nonlinearities 

following the ideas of Krasnosel'skii and Pokrovskii [24]. Output of the backlash operator on 

the monotonic inputs can be described by the following expression: 
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Here X0 is the initial position of the piston in a cylinder. Such an expression (action of such an 

operator) can be illustrated by the Fig. 2. 
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Fig. 2. Dynamics of input-output relation for the backlash operator 

The detailed description of this operator as well as its properties is considered in the book of 

Krasnosel'skii and Pokrovskii [24]. 

Here X(t) is a displacement of the cylinder's center, and Y(t) is a displacement of a piston in the 

horizontal plane (see Fig. 1). 

Physical model 

Let us assume that the deviation y and angle θ are small, i.e., xx   and the boundary conditions 

that determine the curvature of the pendulum are: 
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The function ),( txX  describes the behavior of the pendulum's profile in the time and shows the 

deviation of the pendulum's points relative to the vertical axis;  xX ,  are the coordinates of the 

pendulum's profile, and )(),0( tstX   is a displacement of the suspension point in the horizontal 

plane. 

The coordinate system transformation in the matrix form is given by 







































0

),0(

cossin

sincos tX

x

y

x

X
. 

Let us construct the physical model of the considered mechanical system taking into account a 

backlash in the suspension point of an elastic rod. In order to do this, we use the Lagrange for-

malism. 

Making the same transformations (Lagrange formalism, variational principle and Tailor’s ex-

pansion), the system of equations which describes the dynamics of the system under considera-

tion has the following form: 
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Stabilization 

Let us consider the problem of control of the pendulum using the feedback principles, i.e., the 

force which affects the piston can be presented by the following equality: 

 

where a>0, k>0 and 
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Here e1 is an average angle of the rod's deviation, and e2 is an average angular velocity of the 

rod. 

Optimization problem 

As was mentioned above, the solution of the problem on stabilization of elastic inverted pendu-

lum in the vicinity of the upper position is consisted in search of the optimal values for coeffi-

cients a  and k .  

In order to solve the optimization problem in the system under consideration, we use the bionic 

algorithms of adaptation because the hysteretic peculiarities in the considered pendulum's mod-

el lead to some difficulties in use of the classical optimization algorithms due to nondifferentia-

bility of the functions in the system of equations. 

Such algorithms are the part of the line of investigation which can be called as an "adaptive be-

havior." Main method of this line consists in the investigation of artificial organisms (in the 

form of computer program or a robot) that can be named as animats (these animats can be 

adapted to environment). The behavior of animats emulates the behavior of animals. 

Actual line of investigation in the frame of the ani-mat approach is an emulation of searching 

behavior of the animals [25, 26]. Let us consider the bionic model of adaptive searching behav-

ior on the example of caddis-flies larvae or Chaetopteryx villosa. The main schema of search-

ing behavior can be characterized by the two stages: 

Motion in a chosen direction (conservative tactics); 

),( 21 eeasignkF 
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Random change of the motion direction (stochastic searching tactics). 

We consider this model for the simple case of maximum search for the function of two varia-

bles. Let us describe the main stages of the considered model: 

1. We consider an animat which is moved in the twodimensional space x, y. Main purpose of 

animat is maximum search for the function f (x, y). 

2. Animat is functioned in discrete time t = 0, 1, 2, … Animat estimates the change of current 

value of f (x, y) in comparison with the previous time   

     .1 tftftf  

3. Every time animat moves so its coordinates x and y change by Δx(t) and Δy(t), respectively. 

4. Animat has two tactics of behavior:  

a) conservative tactics; 

b) stochastic searching tactics. 

In that way, we can use the proposed algorithm for searching the optimal control in the problem 

of stabilization of the elastic inverted pendulum. Taking into account the reasoning presented 

above, we can apply the presented algorithm to the functional J (a , k )  where the coefficients a  

and k  determine the character of control of the mechanical. Due to the fact that the presented 

bionic algorithm is used to maximum search of the function of two variables, we will consider 

the minimization of the functional as a procedure for finding the coefficients a  and k  that lead 

to realization of the condition 

  .max,  kaJ  

Simulation results 

The characteristics and initial conditions for the mechanical system under consideration are: 

m = 1 kg; M = 10 kg; l = 1 m; ρ = 1,04 kg/m; E = 210·10
9
 Pa; I = 0,087 kg·m

2
; α= 0.06°; L = 

0,01 m; mp = 1 kg. 

In the searching process for optimization (using the bionic algorithm), we have obtained the 

following values of the coefficients: a = 8,4 and k = 1,39. 

In order to estimate the stability of the system under consideration, we use the Lyapunov crite-

rion. Namely, we use the following Lyapunov function: 

.2
2

2
1 eeV   

The phase trajectory of such a system together with the dynamics of Lyapunov function in time 

(namely in discrete time which corresponds to the difference scheme) are presented in the Fig. 

3. In this figure, the integral angle e1 and integral angular velocity e2. 
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Fig. 3. Phase trajectory (top panel) and dynamics of Lyapunov function (bottom panel) 

Conclusions 

In this paper, we have considered the stabilization problem of the elastic inverted pendulum un-

der hysteretic control in the form of a backlash in the suspension point. Also the problem of op-

timization for the system under consideration is analyzed. Main coefficients, namely a and k, 

that provide the solution of the optimization problem for the considered system are obtained 

using the so-called bionic algorithm. 

All the results on stabilization of the system under consideration have obtained using the corre-

sponding numerical methods based on the difference scheme. The results of numerical simula-

tions show that the considered system eventually tends to the stable state both in the case of the 

absence of a backlash and in the case of its presence. These facts are presented in the form of 

the corresponding phase portraits for the considered system. Moreover, in order to estimate the 

stability of the elastic pendulum with the hysteretic nonlinearity in the suspension point, we 

have used the Lyapunov criterion and the dynamics of the corresponding Lyapunov function 

has also been presented. 
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