Сравнительное моделирование фазовых спиральной и обычной зонных пластинок

А.А. Савельева^{1,2}, Е.С. Козлова^{1,2}, В.В. Котляр^{1,2}

¹Институт систем обработки изображений РАН - филиал ФНИЦ «Кристаллография и фотоника» РАН, Молодогвардейская 151, Самара, Россия, 443001

²Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34a, Самара, Россия, 443086

Аннотация

В статье с помощью FDTD-метода проведено сравнительное моделирование фазовых спиральной и обычной зонных пластинок. Показано, что в ближней зоне распределения, полученные данными элементами, различны.

Ключевые слова

Вихревой пучок, зонная пластинка, спиральная зонная пластинка, FDTD-метод

1. Введение

Вихревые лазерные пучки являются объектами исследований относительно нового и важного направления в современной науке - сингулярной оптики. Проблемами формирования, распространения, обнаружения оптических вихрей (OB) активно занимается современное научное сообщество [1-5]. В [1] предложен и продемонстрирован генератор вихревого пучка на основе спиральной зонной пластинки (3П), фокус которого может быть перемещен путем изменения длины волны падающего света. В работе [2] предлагается новый способ генерации OB на основе поляризационной анизотропии вокруг связанных двумерных периодических структур. В [4] авторы численно и экспериментально исследовали распространение вихревых пучков Лагерра-Гаусса с длинной волны λ =1550 нм через кольцевые щели, круглые апертуры и ЗП. Показано, что ЗП не влияет на топологический заряд (ТЗ) OB. Вихревые лазерные пучки получили довольно широкий спектр применения в различных областях. Их используют для оптических коммуникаций [5], при создании оптических пинцетов [6], в квантовых вычислениях и криптографии.

2. Описание моделирования

В данной работе представлены результаты численного моделирования FDTD-методом распространения лазерного излучения через фазовые спиральную зонную пластинки. Для расчета шаблона 3П были выбраны следующие параметры: $\lambda = 0,532$ мкм, $f = \lambda$, P = 27 (общее количество зон эквивалентное 13 кольцам). Рассматриваемая 3П предполагается быть изготовленной в кварцевом стекле. Линейно поляризованный гауссов пучок с длиной волны $\lambda = 532$ нм, радиусом перетяжки $\omega = 8$ нм и внедренным в него топологическим зарядом m = 3 был выбран в качестве падающего излучения. При расчетах использовались следующие параметры сетки: шаги по поперечным и продольной координатам составили $\Delta x = \Delta y = 15$ нм. Шаг по псевдо-времени *ct* был выбран равным Δ (ct) 7 нм в соответствии с условием Куранта. В ходе анализа результатов моделирования производилось усреднение поля по 10 периодам. Также рассматривалась СЗП из кварцевого стекла, с T3 m = 3, максимальным радиусом R = 4 мкм и длиной фокуса $\lambda = 0,532$ мкм. Гауссов пучок с длиной волны $\lambda = 532$ нм, радиусом как и для 3П. Результаты моделирования представлены на рис. 1. Из рис. 1 видно, что ЗП при фокусировке формирует подобие кольца, в то время как

на выходе СЗП формируется 3 пика. Различия видны и в компоненте вектора Умова-Поинтинга.

Рисунок 1: Результаты численного моделирования для ЗП (а-б) и СЗП (в-г): интенсивность (а,в) и продольная компонента вектора Умова-Поинтинга (б,г)

3. Заключение

В статье с помощью FDTD-метода проведено сравнительное моделирование фазовых спиральной и обычной ЗП. Для сравнения в входное излучение для обычной ЗП внедрялся ТЗ, который совпадал с ТЗ СЗП m = 3. Показано, что в ближней зоне распределения, полученные данными элементами, различны. В дальнейшей работе планируется сравнить распределения, формируемые элементами в на расстоянии нескольких микрон и рассмотреть друге типы падающего излучения.

4. Благодарности

Работа выполнена при поддержке Российского фонда фундаментальных исследований РФФИ (грант № 18-29-20003) в части моделирования зонной пластинки, Российского научного фонда (грнат № 18-19-00595) в части спиральной зонной пластинки и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ «Кристаллография и фотоника» РАН в частях «Введение» и «Заключение».

5. Литература

- [1] Yu, J. Super-variable Focusing Vortex Beam Generators Based on Spiral Zone Plate Etched on Optical Fiber Facet / J. Yu, C. Fu, Z. Bai, Y. Wang // Journal of Lightwave Technology. – 2020. DOI: 10.1109/JLT.2020.3038650.
- [2] Wang, B. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum / B. Wang, W. Liu, M. Zhao, J. Wang, Y. Zhang, A. Chen, F. Guan, X. Liu, L. Shi, J. Zi // Nature Photonics. – 2020. – Vol. 41(2). – P. 623-628. DOI: 10.1038/s41566-020-0658-1.
- [3] Kotlyar, V. V. A vector optical vortex generated and focused using a metalens / V.V. Kotlyar, A.G. Nalimov // Computer Optics. – 2017. – Vol. 41(5). – P. 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
- [4] Cui, C. Focusing characteristics of optical vortex passing through a Fresnel zone plate / C. Cui, Z. Wang, X. Zhan, H. Wang, J. Wang, L. Liu, Z. Li, C. Wu // Optical Engineering. – 2021. – Vol. 60(1). – P. 016101. DOI: 10.1117/1.OE.60.1.016101.
- [5] Карпеев, С.В. Сравнение устойчивости вихревых пучков Лагерра–Гаусса к случайным флуктуациям оптической среды / С.В. Карпеев, В.Д. Паранин, М.С. Кириленко // Компьютерная оптика. 2017. Т. 41, № 2. С. 208-217. DOI: 10.18287/2412-6179-2017-41-2-208-217.
- [6] Kotlyar, V.V. Energy backflow in the focus of an optical vortex / V.V. Kotlyar, A.G. Nalimov, S.S. Stafeev // Laser Physics. - 2018. - Vol. 28(12). - P. 126203. DOI: 10.1088/1555-6611/aae02f.