Сравнительное исследование степенных аподизирующих функций при кодировании волнового фронта с целью увеличения глубины фокуса

А.Е. Русецкая

Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия alla.rusetskaya@gmail.com

Аннотация — В данной работе проведено сравнительное исследование влияния аподизации оптической системы с полиномиальной фазой высокого порядка на увеличение глубины фокуса. На основе численного моделирования построены зависимости сохранения функции рассеяния точки от параметров аподизирующей функции при дефокусировке.

Ключевые слова — увеличение глубины фокуса, аподизация, преобразование Френеля, дефокусировка

1. Введение

Увеличение глубины резкости за счет уменьшения зрачка или числовой апертуры системы приводит к ухудшению разрешения. Одним из способов увеличить глубину резкости без ухудшения разрешения является кодирование волнового фронта за счет дополненной маски со степенной зависимостью фазовой [1]. Внесенная фазовая аподизация изменяет форму волнового фронта таким образом, что модуль передаточной функции системы становится независимым от дефокусировки [2]. Такое кодирование обеспечивает увеличение глубины не только фокусировки без потери разрешения системы, но также позволяет уменьшить влияние некоторых аберраций, таких как хроматические или внеосевые [3,4].

Среди различных функций аподизации, предназначенных для увеличения глубины фокуса, чаще всего используется кубическая фаза [5]. Также рассматриваются фазовые функции более высоких степеней [6-8]. Отметим, что влияние аподизирующих функций зависит не только от степени, но и от параметра масштаба [9].

В данной работе проведено сравнительное исследование влияния аподизации оптической системы с полиномиальной фазой высокого порядка (кубической, пятой и седьмой) при различных значениях параметра масштаба.

Цель исследования – оптимизировать масштабирующий параметр для максимизации глубины фокуса с минимальными искажениями функции рассеяния точки (ФРТ).

Исследование выполнялось на основе численного моделирования дефокусировки с использованием преобразования Френеля. Для определения наилучших параметров аподизирующей функции были построены графики зависимости среднеквадратичного отклонения ФРТ от величины дефокусировки.

2. Теоретические основы

Оптическая изображающая система состоит из линзы, функция пропускания которой имеет следующий вид:

$$l(x, y) = e^{\left(-ik\frac{(x^2+y^2)}{2f}\right)},$$
 (1)

где $k = 2\pi/\lambda$ – волновое число падающего излучения с длиной волны λ, f – фокусное расстояние линзы.

Рассмотрим фазовую аподизацию линзы в следующем виде:

$$T(x,y) = \left[e^{-\frac{x^2}{\sigma^2}}e^{-\frac{y^2}{\sigma^2}}e^{i\alpha x^q}e^{i\alpha x^q}\right]e^{\left(-ik\frac{(x^2+y^2)}{2f}\right)},\quad(2)$$

где σ – радиус Гауссова пучка, q – параметр степени, α – масштабирующий параметр.

Расчет ФРТ аподизированной оптической системы в условиях дефокусировки может быть выполнен с использованием преобразования Френеля для функции T(x, y):

$$F(\xi, \eta, z) = \iint_{-\infty}^{+\infty} T(x, y) \exp\left\{\frac{ik}{2z}[(x - \xi)^2 + (y - \eta)^2]\right\} dx dy.$$
(3)

Для нахождения нормированного среднеквадратичного отклонения (СКО) δ для ФРТ на различных расстояниях от фокальной плоскости $\Delta = f - z$ будем пользоваться следующей формулой:

$$\delta = \sqrt{\sum_{i=0}^{n} \frac{\sum_{j=0}^{n} (F_{ij} - O_{ij})^{2}}{\sum_{j=0}^{n} O_{ij}^{2}}},$$
(4)

где O_{ij} – отсчеты идеального поля (при $\Delta = 0$ мм), а F_{ij} – отсчеты остальных полей (при $\Delta \neq 0$ мм).

3. Результаты моделирования

Для представленных ниже результатов использовались следующие параметры расчета: фокусное расстояние f = 300 мм, $\sigma = 0,5$ мм, длина волны $\lambda = 5 \cdot 10^{-4}$ мм, расстояние дефокусировки Δ варьировалось вплоть до 150 мм в обе стороны.

Результаты расчета амплитуды ФРТ для функций аподизации третьей, пятой и седьмой степени при $\alpha = 50$ с их значениями СКО после реализации преобразования Френеля представлены на рис. 1.

IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

Рис. 1. Картины ФРТ при аподизации функцией T(x, y) третьей, пятой и седьмой степени при $\alpha = 50$ для различных расстояний дефокусировки Δ

Исходя из полученных результатов (рис. 1), можно сказать, что лучшее сохранение картины ФРТ при дефокусировке демонстрирует кубическая (q=3) фазовая аподизация — картины почти не меняются при $\Delta=\pm150$ мм. При увеличении степени (q=5,7) вариации ФРТ более заметны.

Для наглядности были построены сравнительные графики зависимости СКО от величины дефокусировки Δ , которые представлены на рис. 2. Хорошо видно, что с увеличением степени q при фиксированном значении параметра масштаба α область инвариантности сокращается. Однако картины ФРТ (рис. 1) при высоких степенях q значительно ближе к распределению дельтафункции [9], чем для кубической фазы. В этом случае кодированное изображение меньше искажается, что приводит меньшим проблемам при декодировании.

Рис. 2. Графики зависимости СКО от величины дефокусировки Δ для функций T(x, y) третьей, пятой и седьмой степени при $\alpha = 50$

Далее было проведено исследование зависимости СКО от дефокусировки Δ для кубической фазовой аподизации при различных значениях параметра α . На графиках, представленных на рис. 3, можно увидеть, что, в основном, при увеличении параметра α область небольших отклонений, т.е. расстояние сохранения картины ФРТ, уменьшается. Однако при $\alpha = 100$ ситуация лучше, чем при $\alpha = 50$ и $\alpha = 75$. Это говорит о наличии некоторых оптимальных параметров для рассматриваемой оптической системы.

Рис. 3. Графики зависимости СКО от дефокусировки Δ для функции аподизации T(x, y) третьей степени при различных параметрах масштаба α

4. Заключение

Результаты данной работы показали, что увеличение степени фазовой функции аподизации приводит к уменьшению области инвариантности ΦΡΤ при дефокусировке. Однако при этом картины ΦΡΤ становятся ближе к распределению дельта-функции, что обеспечивает меньшие искажения кодированного изображения. Лучшее сохранение картины ФРТ с фиксированном параметром масштаба $\alpha = 50$ при дефокусировке демонстрирует кубическая фазовая аподизация, при этом картины фазовой аподизации пятой и сельмой степени остаются неизменными при фиксированной величине дефокусировки.

ЛИТЕРАТУРА

- Dowski, E.R. Extended depth of field through wave-front coding / E.R. Dowski, W.T. Cathey // Appl. Opt. – 1995. – Vol. 34. – P. 1859-1866.
- [2] Van der Gracht, J. Broadband behavior of an optical-digital focusinvariant system / J. Van der Gracht, E.R. Dowski, M.G. Taylor, D.M. Deaver // Opt. Lett. – 1996. – Vol. 21. – P. 919-921.
- [3] Zhang, W.Z. Ray aberrations analysis for phase plates illuminated by off-axis collimatedbeams / W.Z. Zhang, Z. Ye, Y.P. Chen, T.Y. Zhao, F.H. Yu // Opt. Express. – 2007. – Vol. 15. – P. 3031-3046.
- [4] Yan, F. Image restoration of an off-axis three-mirror anastigmatic optical system with wavefront codingtechnology / F. Yan, L.G. Zheng, X.J. Zhang // Opt. Eng. – 2008. – Vol. 47. – P. 8.
- [5] Wach, H.B. Control of chromatic focal shift through wavefront coding / H.B. Wach, E.R. Dowski, W.T. Cathey // Opt. Signal Recovery and Synthesis. – 1998. – Vol. 37. – P. 5359-5367.
- [6] Xu, Y. Ultra long high resolution beam by multi-zone rotationally symmetrical complexpupil filter / Y. Xu, J. Singh, C.J.R. Sheppard, N. Chen // Opt. Express. – 2007. – Vol. 15. – P. 6409-6413.
- [7] Хонина С.Н. Непараксиальное распространение гауссовых пучков под углом к оси анизотропного кристалла / С.Н. Хонина, О.В. Зотеева, С.И. Харитонов // Компьютерная оптика. – 2012. – Т. 36. – С. 357-364.
- [8] Khonina, S.N. Generalized apodization of an incoherent imaging system aimed for extending the depth of focus / S.N. Khonina, A.Vol. Ustinov // Pattern Recognit. Image Anal. – 2015. – Vol. 25. – P. 626-631.
- [9] Khonina, S.N. Power Phase Apodization Study on Compensation Defocusing and Chromatic Aberration in the Imaging System / S.N. Khonina, S.G. Volotovskiy, A.P. Dzyuba, P.G. Serafimovich, S.B. Popov, M.A. Butt // Electronics. – 2021. – Vol. 10. – P. 1327.