Секция: Науки о данных

Современное состояние утечек конфиденциальной информации через облачные хранилища данных

Д.Д. Дайнеко¹, Д.А. Бахтеева¹, Д.Г. Зыбин¹, В.А. Спирин¹, А.В. Калач^{1,2}

Аннотация. Представлена информация об утечках конфиденциальных данных, находящихся в облачных хранилищах типа Amazon, Mongo DB, в файловых хостингах типа Google Drive, а также облачных серверов резервного копирования в период 2016-2018 гг. Сделаны выводы о необходимости развития систем обеспечения безопасности информации с использованием облачных технологий за счет повышения их киберустойчивости.

1. Введение

Все большую значимость на рынке информационных ресурсов приобретают облачные технологии. Государственные организации и коммерческие компании все больше ощущают удобство использования облачных сервисов в виртуальных средах и все чаще готовы выносить туда свои базы данных. По мере развития как самих облачных технологий, так и информационной среды в целом, случаи непреднамеренной компрометации данных встречались эпизодически. Но в настоящее время угроза потери данных становится все более ощутимой и количество инцидентов регистрируется все чаще. Большая часть всех утечек конфиденциальной информации из открытых хранилищ есть следствие неправильного предоставления прав доступа лицам или же неверная настройка конфигурации систем [1 – 8].

Специалистами аналитического центра InfoWatch было проведено изучение случаев утечек корпоративных баз данных через облачные сервисы и другие файловые хранилища. Предметом стали различные публичные сообщения об утечках конфиденциальных данных через облачные хранилища (Amazon, Mongo DB и др.), папок в файловых хостингах (Google Drive и др.), а также облачных серверов резервного копирования в период 2016-2018 гг. При этом, не рассматривались инциденты, связанные с утечками информации через веб-серверы и почтовые серверы. Акцент был сделан на проблемы утечек персональных и иных данных из объектах виртуализации данных (облачные хранилища и сервисы) [9].

2. Утечка конфиденциальной информации через облачные хранилища данных

На основе публичных сообщений в СМИ и других открытых источников аналитический центр InfoWatch в 2018 году зафиксировал увеличение утечек конфиденциальных данных через облачные серверы и хранилища с доступом через Сеть почти в 1,5 раза по сравнению с предыдущим годом. И такая тенденция сохраняется на протяжении нескольких лет. Например, по сравнению с 2016 г. утечек стало больше в 4,4 раза [9].

¹Воронежский институт Федеральной службы исполнения наказаний, Иркутская 1-а, Воронеж, Россия, 394072

²Воронежский государственный технический университет, Московский проспект 14, Воронеж, Россия, 394026

Обладателем печального «рекорда» по числу скомпрометированных записей является 2017 год. Более 1,7 млрд записей было потеряно с незащищенных серверов (а это около 13% всего объема потерянных в этом году данных). Большая часть данных принадлежала компании, занимающейся сетевым маркетингом – River City Media. Вследствие неправильного резервного копирования была допущена ошибка и огромная база данных объемом 1,34 млрд записей была скомпрометирована. За 2018 год потери данных из открытых серверов составляют 1,3 млрд записей, в самом крупном инциденте было потеряно 400 млн записей. При этом, порядка 40% утечек приходится на высокотехнологичные компании

На период 2017 - 2018 гг., наибольшая доля утечек, связанных с неправильным обслуживанием и настройкой облачных серверов, а также других ошибок при работе с виртуализацией данных, приходится на высокотехнологичный сегмент — производители ИТпродукции, ИТ-сервисы, социальные сети и т.д. [9].

Высокоразвитые компании, обладающие технологическим потенциалом склонны к использованию трендовых инструментов визуализации, а в частности — внешних хранилищ данных. Но к сожалению, не всегда сотрудники таких компаний учитывают некоторые нюансы при работе с облачными серверами, и как следствие, учащаются случаи утечек.

Таким образом, в результате около 90% всех данных, которые были утеряны с незащищенных серверов в 2018 г., пришлись именно на хайтек-индустрию (таблица 1).

Таблица 1. Отраслевое распределение утечек из открытых облачных ресурсов за период 2017-2018 гг.

201011.			
Отрасли утечек	2017 г.	2018 г.	
Государственные организации	14,3%	8,5%	
Медицина	8,2%	11,4%	
Высокие технологии	32,6%	40%	
Образование	4,1%	7,2%	
Ритейл	10,2%	7,2%	
Промышленность и транспорт	12,2%	7,2%	
Банки, финансы и страхование	12,2%	1,4%	
Другое	6,2%	17,1%	

На протяжении того же года в число «жертв» стали включаться сервера медицинских и образовательных учреждений – количество утечек сильно возросло. Но в то же время значительно падает количество потери данных из финансовой сферы, промышленности и госсектора. Персональные данные утекают в четырех случаях из пяти. Большая часть, а именно более 80% утечек приходится на персональные данные. По 9,2% случаев компрометации данных с открытых хранилищ – это утечки платежной информации, а также коммерческих секретов и производственных ноу-хау (таблица 2) [9].

Таблица 2. Распределение утечек по типам данных за период 2017-2018 гг.

Типы данных	2017 г.	2018 г.
Персональные данные	77,8%	81,6%
Коммерческие секреты	8,9%	9,2%
Платежная информация	6,7%	9,2%
Государственная тайна	6,7%	-

Четверть утечек происходит с серверов Amazon S3. В части, касающейся распределения скомпрометированных серверов по типам произошли существенные изменения. Лидером в 2018 году, как и в предыдущие было облачное хранилище Amazon S3. На их долю пришлось более четверти утечек (таблица 3).

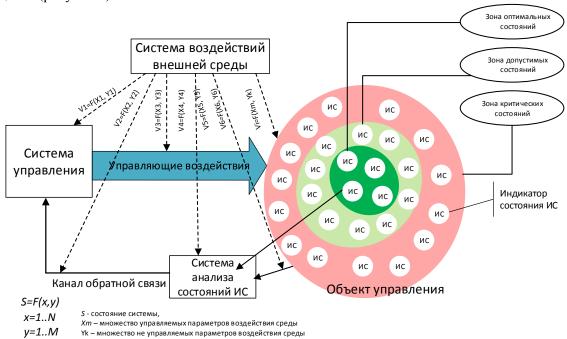
Тенденцией к утечкам конфиденциальной информации в 2018 году обзавелись сервера Mongo DB, а также такие платформы как Elasticsearch и Apache, файловый хостинг Google

Drive. В свою очередь такие сервисы как rsync и GitHub сократили случаи утечки данных при резервном копировании в 3 и 7 раз соответственно. В каждом втором инциденте жертвой становится американская компания. Что же касается распределения утечек по странам — тут произошли сильные изменения. 2018 г. как и в предыдущие лидером остается США, но утечки тут сократились с 75,5% до 47,1%. А вот в Канаде количество увеличилось почти в 3 раза, в Индии — в 2 раза (таблица 4) [9].

Таблица 3. Данные о скомпрометированных хранилищах, 2017-2018 гг.

Хранилища	2017 г.	2018 г.
Amazon S3	28.6%	25.7%
Apache	2%	4.3%
FTP	2%	1.4%
GitHub	10.2%	1.4%
Microsoft SQL	8.2%	1.4%
Mongo DB	6.1%	15.7%
rsync	8.2%	2.8%
Другое	34.7%	34.3%
Google Drive	-	5.7%
Elasticsearch	-	7.1%

Таблица 4. Распределение утечек по странам, 2017-2018 гг.


Страны	2017 г.	2018 г.
Канада	2,0%	5,9%
Китай	2,0%	1,5%
Великобритания	6,1%	4,4%
Индия	4,1%	8,8%
Швеция	2,0%	-
США	75,5%	47,1%
Другое	8,2%	19,1%
Финляндия	-	2,9%
Франция	-	2,9%
Россия	-	2,9%
Бразилия	-	4,4%

Утечки данных из незащищенных облачных хранилищ приобрели угрожающий масштаб во всем мире. Многие крупные компании, такие как American Express, Honda, Nokia, Sky Brazil, и ряд государственных структур стали жертвами таких инцидентов. Потенциальным источником утечки данных является каждое хранилище, в котором периодически выявляют тысячи и даже десятки тысяч ошибок в конфигурации.

Одна ошибка в работе корпорации может являться причиной утечки с незащищенного сервера. Многие компании теряют огромные базы данных, так как представители киберпреступности проводят мониторинг облачных ресурсов.

Проведенный анализ данных об конфиденциальной утечках информации через облачные хранилища данных позволяет сделать вывод о целесообразности повышения их киберустойчивости. Киберустойчивость представляет собой частный случай одностороннего информационного конфликта в киберпространстве, в котором атакующая сторона для достижения своих целей использует различные стратегии, а обороняющаяся - стратегии обеспечения устойчивого функционирования системы управления объектами защиты от подобных воздействий. При этом, особенностью кибернетического противоборства заключается в том, что как минимум две (или более) подсистемы управления стремятся распространить управляющие воздействие друг на друга через совместно используемый общий ресурс (глобального информационного пространство) [10]. Вследствие этого в качестве одного из исходных положений можно рассматривать гипотезу о поведении информационных систем в условиях в условиях информационного конфликта, фиксирующая множество возможных стратегий нападения и защиты. На этапе формализации процесса киберустойчивости система гипотез порождает соответствующее разнообразие моделей и алгоритмов киберустойчивости.

Концептуальные модели киберустойчивости объектов защиты в условиях информационного конфликта фиксируют множество возможных априорных и апостериорных знаний о стратегиях противоборствующих сторон и выступают в качестве их вербальных (слабоформализованных) моделей (рисунок 1).

Рисунок 1. Графическая модель представления многовариантного состояния объекта исследования в условия воздействия.

Формально модель проблемной ситуации может быть задана с помощью следующих элементов, отражающих множества наиболее существенных с точки зрения ЛПР факторов [10]:

$$N = \{1, 2, ..., i_0\}$$
 — множество участков конфликта;

 $S \subseteq N_-$ подмножество участков конфликта, объединенных общей целью, содействующих друг с другом (коалиция);

 R_{-} отношение соподчиненности на коалициях;

 U^{s} – множество стратегий S-ой коалиции;

 Θ^{S} – информация, имеющаяся в распоряжении S-ой коалиции;

 XU^{s} — декартово произведение множеств стратегий коалиций — множество ситуаций; $W^{s}(X_{s}U^{s})$ — функция выигрыша S-ой коалиции;

 P^{S} — модель, отражающая предпочтения S-ой коалиции на множестве ситуаций в модели проблемной ситуации.

Для каждой коалиции на множестве ситуаций в общем случае необходимо задать бинарное отношение предпочтения. Целью коалиции в конфликте является достижение наиболее предпочтительной в том или ином смысле ситуации. Ситуацией называется результат выбора всеми игроками своих стратегий. В общем случае выигрыш i-го игрока не совпадает с

выигрышем $W^{\{i\}}(\cdot)$, который он может себе обеспечить, действуя в одиночку, так как, вступив в коалицию S, он может получить больше. Это объясняется тем, что: $W^{S}(\cdot) \geq \sum_{i \in S} W^{\{i\}}(\cdot).$

$$W^{S}(\cdot) \geq \sum_{i \in S} W^{\{i\}}(\cdot)$$

Таким образом, наиболее общую модель конфликта задает система множеств:

$$\langle N, \{U^S, \theta^S, P^S, W^S\}_{S \subset N}, R \rangle$$

Механизм Н модели конфликта состоит в том, что участки конфликта из множества N оказывают воздействие на некоторую систему, что в итоге приводит к получению ими определенных выигрышей:

$$H: U^{\{1\}} \times U^{\{2\}} \times \cdots \times U^{\{i_0\}} \times T \rightarrow (W^{\{1\}}, ..., W^{\{i_0\}})$$

где Т – множество моментов времени развития конфликта. Каждый из участков конфликта действует по вполне определенным правилам, стремясь достичь своей цели. Предполагается, что все участки конфликта получают какую-либо информацию $\theta^{\{i\}}$ о состоянии системы. В большинстве случаев информация $oldsymbol{ heta}^{\{i\}}$ касается вида функций $oldsymbol{W}^{\{i\}}$ выигрыша отдельных игроков или \boldsymbol{W}^{s} их коалиций, а также множества допустимых стратегий участков конфликта и коалиций.

3. Заключение

Таким образом, помимо повышения уровня квалификации системных администраторов и пользователей, следует проводить ревизии информационных ресурсов, использовать инструменты контроля доступа, проводить мониторинг незащищенных облачных хранилищ информации ограниченного доступа и активно применять современные киберустойчивости.

4. Литература

- Глотина, И.М. Латентный характер угроз экономической безопасности / И.М. Глотина // Материалы III международной научно-практической конференции. - Саратов: ООО "Центр профессионального менеджмента "Академия Бизнеса", 2015. - С. 51-56.
- [2] Шпеко, М.В. Шифрование данных в облачных сервисах / М.В. Шпеко // Материалы Всероссийской молодежной научно-практической школы. - Кемерово: Кузбасский государственный технический университет им. Т.Ф. Горбачева, 2014. - С. 281-282.
- Батурина, М.В. Будущее за киберстрахованием / М.В. Батурина // Страховое дело, 2018. [3] T. 7, № 304. – C. 28-33.
- Пригодин, С.А. Правовая основа кибербезопасности в Российской Федерации и [4] тенденции развития / С.А. Пригодин // Сборник научных трудов по материалам VII Международной научно-практической конференции – Анапа: ООО исследовательский центр экономических и социальных процессов", 2019. - С. 36-41.
- [5] Бобрышева, Г.В. Облачная безопасность / Г.В. Бобрышева, Е.М. Пудовкина // Сборник статей XVII Международной научно-технической конференции – Пенза: Автономная некоммерческая научно-методическая организация "Приволжский Дом знаний", 2017. -C. 99-104.
- [6] Калач, А.В. Системный анализ и оценка современных угроз обеспечения безопасности информации / А.В. Калач // Вестник Воронежского института ФСИН России. – 2019. – № 1. – C. 69-74.
- Гребенников, Н. Киберугрозы сегодня: предупрежден значит, вооружен / Н. [7] Гребенников // Первая миля. – 2017. – Т. 4, № 65. – С. 76-78.
- [8] Полтавцева, М.А. Консистентный подход к построению защищенных систем обработки и хранения больших данных / М.А. Полтавцева // Проблемы информационной безопасности. Компьютерные системы. – 2019. – № 2. – С. 29-44.

- [9] Аналитический центр InfoWatch [Электронный ресурс]. Режим доступа: https://www.infowatch.ru/ (31.10.2019).
- [10] Комарович, В. Ф. Компьютерные информационные войны: концепция и реалии / В.Ф. Комарович, И.Б. Саенко // Защита информации. Конфидент. − 2002. № 4-5. С. 84-88.

The current status of sensitive information leaks through cloud storage

D.D. Dayneko¹, D.A. Bakhteeva¹, D.G. Zybin¹, VA. Spirin¹, A.V. Kalach^{1,2}

Abstract. Provides information about leaks of sensitive data stored in cloud storage like Amazon, Mongo DB, file hosts like Google Drive, as well as cloud backup servers in the period 2016-2018. Conclusions drawn on the need to develop information security systems using cloud technologies by increasing their cyber stability.

¹VRI of the FPS of Russia, Irkutskaya str. 1-a, Voronezh, Russia, 394072 ²VSTU, 20-letya Oktyabry str. 84, Voronezh, Russia, 394026