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Abstract. This paper describes algorithms, corresponding computer programs and the
results of computations, supplementing results published earlier. We consider the
multiple sequence alignment problem, which can be nominated by a central problem in
computational biology. For it, we continue to consider some different versions of so-
called “triangular norm” defined on the set of triangles formed by the different distance
between genomes computed by different algorithms. Basically, the new results are
associated with incorrect variants of obtaining the triangle inequality, which for

matrices of the order of about 50 × 50 is violated in the two most successful metrics
(including the Panin’s metric earlier developed by us) in less than 1% of cases. Possible
improvements are related to the use of neural networks that were not used by us in
previous calculations. In this case, neural networks solve the inverse problem: we
improve (reduce) the overall badness of the matrix of distances between genomes,
forcibly changing the previously obtained distances; further, we try to reflect these
forced changes in the original algorithms for calculating distances. In this paper, we
present the results of concrete calculations obtained by us.

Keywords: DNA-sequences, heuristic algorithms, triangular metric, distance between genomes, 
neural networks.

1. Introduction and motivation
In this paper, we describe the continuation of research on the issues that we started in [1, 2, 3, 4].

Thus, this paper describes algorithms, corresponding computer programs and the results
of computations, supplementing results published earlier. We consider the multiple sequence
alignment problem, which can be nominated by a central problem in computational biology. For
it, we continue to consider some different versions of so-called “triangular norm”. (The name
“triangular metric”, also sometimes encountered in our previous papers, is also quite possible
and does not contain errors, we will not give detailed comments on this thing. However, the
“norm” in our case is some more correct, both when we speak about the whole matrix, and when
we speak only about the only triangle.) Such norm defined on the set of triangles formed by the
different distance between genomes computed by different algorithms. Thus, in this paper the
word “metric” will be used only as the distance between the genomes, and the word “norm” as
an indicator of the badness of a certain set of such distances.

Our new directions of work consist, first, in the further improvement of Panin’s metric, and,
secondly, in new variants of investigation of various variants of the triangular norm. Both these
directions are interrelated. Namely, we improve the interpretation of the Panin’s metric in the
same way as it is done in some interpretations of genetic algorithms: we are trying to achieve a
combination of parameters, for which the triangular norm reaches a minimum value (or is close
to it).
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And considering the second problem, i.e., the study of variants of the triangular norm, we
proceed as follows. We consider incorrect variants of obtaining the triangle inequality, which for
matrices of the order of about 50× 50 is violated in the two most successful metrics (including
the Panin’s metric earlier developed by us) in less than 1% of cases. It is important to note that
in order to improve the decrease in the quantitative index of the badness of the entire matrix
of considerations, we also, first of all, consider triangles in which the triangle inequality is not
violated, but in which the badness value is relatively large. Possible improvements are related to
the use of neural networks that were not used by us in previous calculations. In this case, neural
networks solve the inverse problem: we improve (reduce) the overall badness of the matrix of
distances between genomes, forcibly changing the previously obtained distances; further, we try
to reflect these forced changes in the original algorithms for calculating distances.

2. Preliminaries
Thus, like our previous papers, we consider the square symmetric matrix of distances between
genomes. There it is necessary to note the following. First, the genomes we choose random
enough and took them off the site [5]. Second, like previous works, we consider in fact three
variants for each of the considered problems:

• for very distant species, including, for example, a mammal “Bison bison” and a reptilia
“Apalone spinifera” (we use the official scientific Latin names), see detailed the species’ list
by the link for direct download [6];

• for a sufficiently close species (human and apes);

• and also for human races (in fact, they can be considered as subspecies of a biological
species).

Let us note, looking ahead, we believe that our a theoretical construction is best applicable for
more distant species, however, acceptable results are obtained also in two other cases.

Thus, we look at algorithms of comparing the quality of different algorithms that calculate
the distance between two genomes. Apparently, all these algorithms are based on the use of
various versions of the Levenshtein distance (or Levenshtein metric), see [7] and very many
other following papers. It is very important to note, that for the simplest formulation of the
problem (to make the strict calculating the value of Levenshtein metric for two given genomes),
we unfortunately obtain a very long-running algorithm (program): it has to do with the actual
length of the strings of genomes. Therefore, in each of the actual algorithms (see [8, 9, 10, 11]
etc.), computation of distances between genomes in reality is a heuristic extension of the exact
algorithm for calculating the Levenshtein distance. And apparently, the approach closest to
our one is given by [12]; let us note, a little running forward, that it also uses a version of the
branch-and-bound method.

Thus, the considered in our previous papers Panin’s metric is no exclusion, It also is a heuristic
algorithm for calculating the close version of such metric; it is an optimization problems, see [13]
etc. However, we used in it a special approach (so called multi-heuristic approach for discrete
optimization problems), and for it, we use the same heuristic as in very different problems. From
many such problems, let us mention two ones only:

• the classical traveling salesman problem (however, we consider our own approach to this
problem, and, most importantly, our original way of specifying the input data, different
from the traditional geometric placement, see, e.g., [14]);

• and the problem of state-minimization for nondeterministic finite automata, see, e.g.,
[15, 16].
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3. The triangular norms: their study and possible attempts of improvement
It was justified in our previous works cited above, there is desirable that in the matrix of distances
between genomes, any of the resulting triangles be close to an acute angled isosceles one with
two angles exceeding 60 degrees. Several various empirically selected numerical characteristics
describing such differences are also given in our works, see [4] etc. However, in the previous
articles we did not consider detailed examples, let us consider them in this section.

In [6], the results of calculations for several metrics and several norms are presented. In this
section, we shall consider the Panin’s metric only, and 3 norms (“badnesses” for the triangle
under consideration). Thus, for each triangle with the sides a ≥ b ≥ c and the angles α ≥ β ≥ γ
we considered the following norms:

bad1 = (α− β)/π , bad2 = (α− β)/α , bad3 = (a− b)/a .

In case if α ≥ 90o, we have considered each norm by the maximum possible (1.0) or even usually
exceeding this value. We assigned an even greater value to the value of badness in the case when
the three considered sides do not form a triangle at all (that is, they do not satisfy the triangle
inequality); let us note, running ahead, that similar situations is happened for any of metrics
considered by us.

The resulting value of the norm of the whole matrix was considered as the arithmetic mean of
the norms of all triangles. We note that for the matrices of distances between genomes (usually
from 30× 30 to 50× 50), the number of triangles is 30·29·28

2·3 = 4060 for dimensions 30, and 19600
for dimension 50; from these values, it is clear that the calculations we need are quite difficult.

Thus, let us consider the part of the table given on the page titled “Panin’s metrics” of [6]
(they are designed as an xlsx-file and are available for the direct download), see the table on
Fig. 1. (The names of the considered species can be found there on the page titled “Types of
animals”.)

Figure 1. The part of the table of Panin’s metric.

Let us choose species with the numbers 5, 15, 25; while doing so, we specifically chose exactly the 
three of those considered, where the metric gives rather poor results (that means the following: 
the badnesses of Panin’s metric give relatively worse results than other metrics comparing most 
other triangles of the matrix under consideration). For all 5 considered metrics, we obtain the 
following 5 triangles corresponding to the species with the numbers 5, 15, 25:
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1) sides 3533, 3142, and 2940 (Panin’s metric);

2) sides 1215, 1179, and 704 (van der Loo’s 1st metric);

3) sides 4379, 4036, and 4029 (van der Loo’s 2nd metric);

4) sides 2943, 2674, and 2492 (Pages’ 1st metric);

5) sides 3444, 3046, and 2838 (Pages’ 2nd metric)

(here, the numbers correspond to numbers of metrics of [4, 6]). Let us consider these 5 triangles
and also 3 other ones, see Fig. 2:

Figure 2. Examples of triangles of metrics (No.No. 1–5) and 3 other ones.

Let us note once again, that we only need the relative lengths of the sides of the triangle.
The further calculations yield the following auxiliary values and values of badnesses, see 

Table 1.

Table 1. The values of badnesses and the auxiliary calculations.
No. a b c cos(α) cos(β) cos(γ) α, o β, o γ, o bad1 bad2 bad3

1 3533 3142 2940 0.33 0.54 0.62 70.1 57.2 51.8 0.076 0.194 0.111
2 1215 1179 704 0.25 0.34 0.83 75.4 70.2 34.2 0.029 0.068 0.027
3 4379 4036 4029 0.41 0.541 0.544 65.8 57.19 57.05 0.048 0.130 0.078
4 2943 2674 2492 0.35 0.53 0.61 69.4 58.1 52.5 0.062 0.160 0.091
5 3444 3046 2838 0.32 0.54 0.62 71.6 57.0 51.4 0.081 0.203 0.116
6 5 4 3 0 0.6 0.8 90 53.1 36.9 – – –
7 7 6 5 0.2 0.54 0.71 78.4 57.1 44.4 0.119 0.272 0.143
8 10 6 5 −0.65 0.89 0.93 130.5 27.1 22.3 – – –

We can see, that three bad orderings for all five triangles give the same sequence of metrics.
Once again, we mention (above, this thing has already been said, but in connection with other
facts) that this ordering differs significantly from the ordering of the badness considered for
complete matrices, see the results of the calculations below and, in more detail, in [4]. However,
in all our calculations (in any case, with the exception of less than 1% of all triangles, i.e.,
including ordering for complete matrices), such ordering turns out to be the same for all three
norms (badnesses).
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Another option for investigating the comparative characteristics of norms is the following one
(we will continue to consider 30 species, and the matrix of distance between genomes, given in
[6]). We choose two metrics and for any one fixed norm we arrange 4060 triangles in order of
increasing values of this norm. At the same time, when reading that both these norms are good
(that is, they give acceptable results), we should ideally obtain identical sequences of triangles.
Actually, one of these two sequences of triangles is obtained from the other by some sequence
transpositions of neighboring elements. Since, as we have noted, the number of triangles in our
case is 4060, then the maximum possible number of transpositions of neighboring elements is
equal to 4060·4059

2 = 8 239 770. Let us give concrete results of work (Table 2) for the first norm
(value “bad1”) only.

Table 2. The joint study of pairs of metrics for the selected first norm (bad1).
Pairs {1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}
Transpositions 175199 163214 169720 175267 154301 159737 160614 180413 179384 181700
Percentages 2.13 1.98 2.06 2.13 1.87 1.94 1.95 2.19 2.18 2.21
Correlation 0.957 0.960 0.959 0.957 0.963 0.961 0.961 0.956 0.956 0.956

Let us give some comments to this table. The pair of metrics is selected in the first line.
The number of transpositions of neighboring elements (for obtaining the monotone sequence)
is given in the second line. The percent of the maximum possible number of transpositions
of neighboring elements (8 239 770) is given in the third line. We do not use Spearman’s rank
correlation coefficient (and some others correlation coefficients used in similar problems); instead
of them, we use the linear function having value 1 for 0 transpositions and value −1 for 8 239 770
transpositions.

Still, we note that the two other norms give somewhat worse results; but for them, the number
of transpositions does not exceed 600 000 (i.e., less than 7.5%), and, therefore, calculated by our
method rank correlation coefficient is more than 0.85.

Thus, all three norms almost always give similar results. Therefore we often use the singular
for the word “norm”: “some different versions of so-called triangular norm” etc. All this suggests
that the task of improving the definition (algorithms for calculating) the norm is less important
than improving the definition (calculation algorithms) of metrics, first of all our original Panin’s
metric. Let us consider these things in the next section.

4. The improvements of Panin’s metric and some approaches to improvements of 
other ones
The object of each of the problems listed in previous section is programming anytime-algorithms; 
as we already said, Panin’s metric algorithmized by the same approach. The methods for solving 
these problems are constructed on the basis of special combination of some different heuristics. 
For the implementation of Panin’s metric, we use:

• some modifications of the truncated branch-and-bound method [17];

• and for the selecting immediate step, we apply dynamic risk functions [18];

• simultaneously for the selection of coefficients of the averaging-out, we use special version of 
genetic algorithm [13];

• and the reductive self-learning by the same genetic methods is used for the start of truncated 
branch-and-bound method [17].

(Thus, a peculiar “loop” of application of heuristics is obtained.) This combination of heuristics
represents a special approach to construction of anytime-algorithms for the discrete optimization
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problems, which can be considered as an alternative to the methods of linear programming, 
multi-agent optimization and neural networks.

As can be seen from the results of our work, cited above, when considering close species, 
several problems are obtained; although here the results are also acceptable, that is, according 
to any of the norms for the considered metric, the Panin’s metric took at least the 2nd place 
among the 5 considered metrics. But all the same for the future work, apparently, it is necessary 
to significantly change the algorithm for calculating the distances between genomes. Thus, in 
this paper we mainly describe the results of calculations obtained for long-range species.

More precisely, let us briefly summarize the results of the calculations in the following table; 
apparently, it practically does not require comments. Let us say only, that “Bad triangles” is 
the number of triangles having violation of the triangle inequality; let us note, that this violation 
occurs (at least in 2 cases) in each of the metrics under consideration.

Table 3. Brief description of the obtained results.
No. of metric Bad triangles bad1 bad2 bad3

1 9 0.039 0.094 0.017
2 185 0.071 0.161 0.030
3 2 0.025 0.064 0.012
4 33 0.037 0.090 0.016
5 207 0.057 0.131 0.023

However, apparently, much more important is the obtained ordering of the quality of metrics.
This ordering is calculated for all 4060 triangles, it differs from the one given above for one
triangle.

In some distance tables of [6], several (not more than 10) values are marked in red; it means
the following. We slightly change the metric values obtained by means of algorithms, trying
to reduce the whole badness of the matrix. In this case, of course, the goal function does not
coincide with the badness, it contains:

• the badness (the main component);

• the number of elements of the matrix being changed (the value increases strongly with
increasing this number);

• and the sum of the absolute values of these changes.

5. Conclusion
Thus, a very small change of the given matrix greatly reduces its badness. The values marked
in red are chosen by us manually. However, at the present time we have a neural network that
implements such an algorithm; we are going to describe this neural network in the following
publication. But the following is much more important: these “red” changes give input
information to another neural network, the one that computes the constants for the metric.
Thus, along with one “loop” of algorithms already described in previous section, we get one
more. Table 3 above already takes into account similar improvements in the metric.

As we said before, the received results of our computer programs are designed as an xlsx-file
and are available for the direct download by [6]. The whole article is actually a comment to this
file.

We also note that different “places” of different metrics for different cases (i.e., the case of
distant animal species, the case of close animal species and the case of subspecies) talk about
the need to continue research in this direction.
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