# Смешанное деформирование тел с разрезами в связанной постановке (ползучесть – поврежденность)

### Е.А. Миронова<sup>а</sup>, Л.В. Степанова<sup>а</sup>

<sup>а</sup> Самарский национальный исследовательский университет имени академика С.П. Королёва, 443086, Московское шоссе, 34, Самара, Россия

#### Аннотация

Изучение процессов разрушения и нелинейного деформирования конструкций является актуальной задачей современной механики деформируемого твердого тела и прикладной математики: целесообразно создание многомасштабных (многоскейлинговых) математических моделей, описывающих взаимосвязь микроструктуры материала и ее влияние на макроскопические свойства материала. Взаимосвязь микроскопических и макроскопических параметров можно отразить с помощью введения иерархической цепочки областей, окружающих вершину трещины и имеющих различную сингулярность поля напряжений в ее окрестности в каждой из зон. Путем введения зон с различной особенностью поля напряжений задача сводится к нелинейной задаче на собственные значения. В работе предложен метод численного определения всего спектра собственных значений нелинейной задачи для всех значений параметра смешанности нагружения.

*Ключевые слова:* континуальная механика поврежденности; смешанное нагружение; автомодельная переменная; напряженнодеформированное состояние; поврежденность

#### 1. Введение

Математическое описание процессов нелинейного деформирования и разрушения материалов является актуальной проблемой современной механики сплошных сред и активно исследуется в настоящее время как в нашей стране [8-10, 13-14], так и за рубежом [1-7,11]. Вопросы, связанные с решением нелинейных задач на собственные значения, вызывают большой интерес, например, в работе [12] предложен метод решения двойственных задач, который позволяет получить распределение скоростей вблизи вершины клина. Особый интерес вызывает взаимное влияние процессов накопления повреждений на напряженно-деформированное состояние в окрестности вершины трещины, и обратно, влияние эволюции напряженно-деформированного состояния на накопление повреждений у вершины трещины в деформируемом теле. Аккуратное описание полей напряжений, деформаций и поврежденности у вершины трещины требует введение иерархической цепочки областей с различной сингулярностью поля напряжений у вершины трещины и процедуры последующего сращивания асимптотик на границе рассматриваемых областей. В этой связи перспективным и эффективным методом решения краевых задач определения напряженно-деформированного состояния у вершины трещины в среде с поврежденностью является метод разложения по собственным функциям, который широко применяется для определения механических полей у вершины трещины в материалах с нелинейными конституциональными уравнениями [8-10,14]. В рамках метода разложения по собственным функциям решение (компоненты тензора напряжений, скоростей деформаций и поврежденность) разыскивается в виде произведения двух функций, одна из которых зависит от угловой координаты и подлежит определению, а другая представляет собой расстояние от кончика дефекта в некоторой степени. Степень и функция, определяющая зависимость механической величины от угловой координаты, подлежат определению. В работах [8-10] показано, что метод разложения по собственным функциям приводит к нелинейным задачам на собственные значения, решения которых и обуславливает асимптотику поля напряжений у вершины трещины, поскольку собственное значение нелинейной задачи представляет собой степень радиальной переменной в асимптотической решении. Одно из собственных значений рассматриваемого класса нелинейных задач на собственные значения, хорошо известно и соответствует собственному значению задачи Хатчинсона-Райса-Розенгрена (ХРР) [1,14]. Возможные другие решения нелинейных задач на собственные значения и представляют интерес и могут привести к новым частным решениям краевых задач определения напряженнодеформированного состояния у вершины трещины в среде с поврежденностью. В настоящей работе предложен метод численного решения нелинейных задач на собственные значения, следующих из проблем определения полей напряжений и сплошности у вершины трещины в условиях смешанного нагружения в полном диапазоне смешанных форм нагружения от чистого нормального отрыва до чистого поперечного сдвига. Показано, что в частном случае асимптотики ХРР предлагаемый метод позволяет найти собственное значение, отвечающее задаче ХРР. Наряду с известным собственным значением определены новые собственные значения, с помощью которых можно описать различную особенность поля напряжений в окрестности вершины трещины при смешанном нагружении элемента конструкции с дефектом.

#### 2. Математическая постановка задачи. Основные уравнения

Определение напряженно-деформированного состояния в окрестности вершины трещины приводит к системе уравнений: системе уравнений равновесия и совместности

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\sigma_{rr} - \sigma_{r\theta}}{r} = 0, \quad \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{\partial \sigma_{r\theta}}{\partial r} + \frac{2\sigma_{r\theta}}{r} = 0,$$

$$2 \frac{\partial}{\partial r} \left( r \frac{\partial \varepsilon_{rr}}{\partial \theta} \right) = \frac{\partial^2 \varepsilon_{rr}}{\partial \theta^2} - r \frac{\partial \varepsilon_{rr}}{\partial r} + r \frac{\partial^2 (r \varepsilon_{\theta\theta})}{\partial r^2}.$$
(1)

Компоненты скорости деформации ползучести, позволяющие связать деформации и напряжения, имеют следующий вид:  $\varepsilon_{rr} = B\sigma_e^{n-1}(2\sigma_{rr} - \sigma_{\theta\theta})/2$ ,  $\varepsilon_{\theta\theta} = B\sigma_e^{n-1}(2\sigma_{\theta\theta} - \sigma_{rr})/2$ ,  $\varepsilon_{r\theta} = 3B\sigma_e^{n-1}2\sigma_{r\theta}/2$ . В работе было получено асимптотическое решение задачи на основе введения функции напряжений Эри, асимптотическое представление которой в окрестности вершины трещины имеет следующий вид:  $\chi(r,\theta) = r^{\lambda+1}f(\theta)$ . Условие совместности деформации позволяет получить нелинейное обыкновенное дифференциальное уравнение четвертого порядка:

$$\begin{aligned} &f_e^2(f)^{IV}\{(n-1)[(1-\lambda^2)f+(f)'']^2+f_e^2\}+(n-1)(n-3)\times\\ &\times\{[(1-\lambda^2)f+(f)''][(1-\lambda^2)(f)'+(f)'']+4\lambda^2(f)(f)''\}^2[(1-\lambda^2)f+(f)'']+\\ &+(n-1)f_e^2([(1-\lambda^2)(f)'+(f)'']^2+[(1-\lambda^2)(f)'+(f)''](1-\lambda^2)(f)''+\\ &+4\lambda^2(f''^2+f'f''))[(1-\lambda^2)f+(f)'']+2(n-1)f_e^2\times\\ &\times\{[(1-\lambda^2)(f)'+(f)''][(1-\lambda^2)(f)'+(f)'']+4\lambda^2(f)(f)''\}[(1-\lambda^2)(f)'+(f)'']+\\ &+C_1(n-1)f_e^2\{[(1-\lambda^2)(f)'+(f)''][(1-\lambda^2)(f)'+(f)'']+4\lambda^2(f)(f)''\}(f)'+\\ &+C_1f_e^4(f)''-C_2f_e^4[(1-\lambda^2)(f)'+(f)'']+f_e^4(1-\lambda^2)(f)''=0,\\ &n+1], \ C_2=(\lambda-1)n[(\lambda-1)n+2]. \end{aligned}$$

где  $C_1 = 4\lambda[(\lambda - 1)n + 1], \ C_2 = (\lambda - 1)n[(\lambda - 1)n + 2].$ 

## 3. Асимптотическое решение задачи. Алгоритмы численного решения нелинейной задачи на собственные значения

Решение представленного НДОУ (2) должно удовлетворять граничным условиям – условиям отсутствия поверхностных усилий на берегах трещины:  $f(\theta = \pm \pi) = 0$ ,  $(f)'(\theta = \pm \pi) = 0$ . В случае рассмотрения трещин нормального отрыва и поперечного сдвига используют условия симметрии и антисимметрии, в соответствии с которыми уравнение (2) интегрируется на отрезке  $[0, \pi]$  с начальными условиями для трещины I типа f(0) = 1, f'(0) = 0,  $f''(0) = A_2$ , f'''(0) = 0 и для трещин II типа f(0) = 0, f'(0) = 1, f''(0) = 0,  $f'''(0) = A_3$ . Для случая смешанного деформирования на отрезке  $[-\pi, \pi]$  условия симметрии и антисимметрии быть применены не могут. Для нахождения всего спектра собственных значений отрезок интегрирования разбивается на два  $[-\pi, 0]$  и  $[0, \pi]$ .

Для реализации смешанного нагружения в определяющие соотношения материала был введен параметр смешанности нагружения (3), принимающий значение равное 1 в случае нормального отрыва (тип I) и принимает значение равное 0 в случае поперечного сдвига (тип II);  $0 < M^p < 1$  для всех промежуточных типов приложенной нагрузки. Впервые исследование смешанных форм деформирования было проведено в работах [6,7], где автором был введен параметр смешанности нагружения:

$$M^{p} = \frac{2}{\pi} \operatorname{arctg} \left| \lim_{r \to 0} \frac{\sigma_{\theta\theta}(r, \theta = 0)}{\sigma_{r\theta}(r, \theta = 0)} \right|$$
(3)

Таким образом, уравнение (2) интегрируется на отрезке  $[0, \pi]$  с начальными условиями f(0) = 1,  $f'(0) = -(\lambda + 1)/tg(M^p \pi/2)$ ,  $f''(0) = A_2$ ,  $f'''(0) = A_3$ . Неизвестные параметры  $A_2$  и  $A_3$  находятся из условий отсутствия поверхностных усилий на верхнем берегу трещины. После построения численного решения на рассматриваемом отрезке интегрирования рассматривается отрезок  $[-\pi, 0]$ , где двухточечная краевая задача заменяется задачей Коши с начальными условиями  $f(-\pi) = 0$ ,  $f'(-\pi) = 0$ ,  $f''(-\pi) = B_2$ ,  $f'''(-\pi) = B_3$ . Неизвестные постоянные  $B_2$ и  $B_3$  подбираются таким образом, чтобы выполнялась непрерывность компонент тензора напряжений  $\sigma_{r\theta}$  и  $\sigma_{\theta\theta}$ . В работе были найдены собственные значения задачи (для последовательного описания уровней разрушения на удалении от вершины трещины), отличные от работы Хатчинсона-Райса-Розенгрена (ХРР). При интегрировании уравнения (2) отыскивались три неизвестные  $\lambda$ ,  $A_2$  и  $A_3$ , были использованы условия – отсутствия поверхностных усилий на верхнем берегу трещины, дополнительным условием накладывалось условие непрерывности радиальной компоненты тензора напряжений  $\sigma_{rr}$  [8-10]. В результате вычислений были определены новые собственные значения, отличные от собственных значений, соответствующих задаче ХРР для различных показателей параметра смешанного нагружения  $M^p$ . Для численного отыскания всего спектра собственных значений был использован один из методов семейства Рунге-Кутты-Фельдберга и метод пристрелки.

На рис. 1–3. представлены полученные угловые распределения тензора напряжений для всего диапазона параметра смешанности нагружения. Результаты вычислений приведены в таблице 1-2, где собраны новые вычисленные собственные значения и пристрелочные значения  $f''(0), f'''(0), f''(-\pi), f'''(-\pi)$  для всех значений параметра смешанности нагружения  $M^p$ . На основе использования новой асимптотики поля напряжений [9,10] были построены

новые угловые распределения тензора напряжений и области диспергированного материала у вершины трещины с учетом процесса накопления повреждений (рис. 4.).



Рис. 1. Угловые распределения компоненты тензора напряжения  $\sigma_{rr}$  для n=3 и n=5, для различных значений параметра смешанности нагружения.



**Рис. 2.** Угловые распределения компоненты тензора напряжения  $\sigma_{r\theta}$  для n=3 и n=5, для различных значений параметра смешанности нагружения.



**Рис. 3.** Угловые распределения компоненты тензора напряжения  $\sigma_{\theta\theta}$  для n=3 и n=5, для различных значений параметра смешанности нагружения.

| Таблица 1. Собственные значения для различных значений параметра смешанности нагружения (n=3) |          |                |                                   |                   |                                    |  |  |  |  |
|-----------------------------------------------------------------------------------------------|----------|----------------|-----------------------------------|-------------------|------------------------------------|--|--|--|--|
| $M^p$                                                                                         | λ        | $f''(0) = A_2$ | $f^{\prime\prime\prime}(0) = A_3$ | $f''(-\pi) = B_2$ | $f^{\prime\prime\prime}(-\pi)=B_3$ |  |  |  |  |
| $M^{p} = 0.1$                                                                                 | 0.749848 | -1.013966      | 17.949395                         | 11.168800         | 0.517892                           |  |  |  |  |
| $M^{p} = 0.2$                                                                                 | 0.749363 | -1.009897      | 8.737115                          | 5.496914          | 0.424696                           |  |  |  |  |
| $M^{p} = 0.3$                                                                                 | 0.748445 | -1.002586      | 5.547736                          | 3.55915           | 0.400979                           |  |  |  |  |
| $M^{p} = 0.4$                                                                                 | 0.746893 | -0.991172      | 3.860179                          | 2.551472          | 0.398938                           |  |  |  |  |
| $M^{p} = 0.5$                                                                                 | 0.744332 | -0.974434      | 2.770084                          | 1.910267          | 0.412827                           |  |  |  |  |
| $M^{p} = 0.6$                                                                                 | 0.740101 | -0.951094      | 1.979071                          | 1.442531          | 0.449823                           |  |  |  |  |
| $M^{p} = 0.7$                                                                                 | 0.732500 | -0.918650      | 1.367524                          | 1.051410          | 0.543569                           |  |  |  |  |
| $M^p = 0.8$                                                                                   | 0.721600 | -0.888990      | 0.899719                          | 0.661603          | 0.907319                           |  |  |  |  |

| Таблица 2. Собственные значения для различных значений параметра смешанности нагружения (n=5) |           |                |                                   |                   |              |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-----------|----------------|-----------------------------------|-------------------|--------------|--|--|--|--|
| $M^p$                                                                                         | λ         | $f''(0) = A_2$ | $f^{\prime\prime\prime}(0) = A_3$ | $f''(-\pi) = B_2$ | $f'''(-\pi)$ |  |  |  |  |
|                                                                                               |           |                |                                   |                   | $= B_3$      |  |  |  |  |
| $M^{p} = 0.1$                                                                                 | 0.833249  | -1.059009      | 17.175337                         | 12.860403         | 0.228893     |  |  |  |  |
| $M^p = 0.2$                                                                                   | 0.832975  | -1.054348      | 8.361967                          | 6.336621          | 0.237512     |  |  |  |  |
| $M^p = 0.3$                                                                                   | 0.832434  | -1.045750      | 5.310084                          | 4.113521          | 0.249890     |  |  |  |  |
| $M^p = 0.4$                                                                                   | 0.831456  | -1.031834      | 3.692485                          | 2.962043          | 0.268777     |  |  |  |  |
| $M^p = 0.5$                                                                                   | 0.829711  | -1.010626      | 2.642970                          | 2.232016          | 0.300862     |  |  |  |  |
| $M^p = 0.6$                                                                                   | 0.826900  | -0.983530      | 1.880908                          | 1.700473          | 0.366278     |  |  |  |  |
| $M^{p} = 0.7$                                                                                 | 0.821000  | -0.940880      | 1.288024                          | 1.229988          | 0.571540     |  |  |  |  |
| $M^{p} = 0.8$                                                                                 | 0.814000  | -0.912565      | 0.849415                          | -0.550000         | 6.170000     |  |  |  |  |
| $M^p = 0.9$ 0.814800 -0.922550 0.498916                                                       | -0.787000 | 0.786000       |                                   |                   |              |  |  |  |  |



Рис. 4. Геометрия области диспергированного материала в окрестности вершины трещины для разных значений параметра смешанности нагружения.

#### 4. Выводы и обсуждение результатов

В работе предложен метод численного определения собственных значений нелинейной задачи на собственные значения, следующих из проблемы определения напряженно-деформированного состояния у вершины трещины в условиях смешанного нагружения. С помощью предложенного подхода для целого ряда значений параметра смешанности нагружения определены новые собственные значения. В ходе работы были получены асимптотические решения класса задач определения НДС и поля сплошности в окрестности вершины трещины в пластине, находящейся в условиях смешанного деформирования. В настоящей работе определены области диспергированного материала, которые формируются в окрестности вершины трещины, и как результат, найден закон скейлинга, который позволяет описать разрастание области дефрагментированного материала.

#### Литература

- [1] Hutchinson, J.W. Singular behavior at the end of tensile crack in a hardening material / J.W. Hutchinson // J. Mesh. Phys. Solids, 1968. V. 16. Nº 1. - P. 13-31.
- [2] Kumar, S. A homogenized multigrid XFEEM to predict the crack growth behavior of ductile material in the presence of microstructural defects / S. Kumar, I.V. Singh, B.K. Mishra, K. Sharma, I.A. Khan // Engineering Fracture Mechanics. - 2016. In press.
- [3] Meng, Q. Creep damage models and their applications for crack growth analysis in pipes: A review / Q. Meng, Z. Wang // Engineering Fracture Mechanics. 2016. In press.
- [4] Murakami,S. Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture / S. Murakami Dordrecht: Springer, 2012. - 423 p.
- [5] Richard, H.A. Schramm, B. Schrimeisen, N.H. Cracks on Mixed Mode loading Theories, experiments, simulations / H.A. Richard, B. Schramm, N.H. Schrimeisen // International Journal of Fatigue, 2014. - № 62. - P. 93 - 103.
- [6] Shih, C.F. Elastic-plastic analysis of combined mode crack problems // Ph. D. Thesis, Harvard University, Cambridge, M.A. 1973.
- [7] Shih, C.F. Small scale yielding analysis of mixed mode plane-strain crack problems. Fracture Analysis ASTM STP 560, 1974. P. 187-210.
- [8] Stepanova, L. Asymptotic self-similar solution of the creep crack problems in damaged materials under mixed mode loading / L. Stepanova, E. Yakovleva, E. Mironova // Applied Mechanics and Materials, 2015. - V. 784. - P. 145-152.
- [9] Stepanova, L.V. Stress-strain state near the crack tip under mixed-mode loading: Asymptotic approach and numerical solutions of nonlinear eigenvalue problems / L.V. Stepanova, E.M. Yakovleva // AIP Conference Proceedings, 2016. - V. 1785. - 030030. DOI: 10.1063/1.4967051.
- [10] Stepanova, L.V. Asymptotic stress field in the vicinity of the mixed-mode crack in damaged materials under creep conditions / L.V. Stepanova, E. M. Yakovleva // Procedia Structural Integrity, 2016. - V. 2. - P. 793-800.
- [11] Torabi, A.R. Abedinasab, S.M. Brittle fracture in key-hole notches under mixed mode loading: Experimental study and theoretical predictions / A.R. Torabi, S.M. Abedinasab // Engineering Fracture Mechanics, 2015. – № 134. – P. 35 – 53.
- [12] Петухов, Д.С. Двойственные задачи плоских ползущих течений степенной несжимаемой среды / Д.С. Петухов, И.Э. Келлер // ВестникСамГТУ. Серия: Физико-математические науки [электронный ресурс]. - Режим доступа: http://mi.mathnet.ru/vsgtu1508
- [13] Пестриков, В.М. Механика разрушения. Курс лекций / В.М. Пестриков, Е.М. Морозов. СПб.: Профессия, 2012. 552 с.
- [14] Степанова, Л.В. Математические методы механики разрушения / Л.В. Степанова // М.: Физмалит, 2009. 336 с.