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Abstract. In recent years, the study of the small celestial bodies with stable Earth orbits is 

recognized as an urgent problem by scientists around the world. This is due to the relatively 

easy availability of such bodies and the ability to obtain important scientific results using the 

small spacecraft or even the nano-class spacecraft. The use of electric propulsion will further 

reduce the cost of such missions. However, at present, no methods have been developed for the 

formation of the control programs and the spacecraft trajectories for such missions. This article 

is devoted to solving this problem. We obtained the optimal duration control program for the 

flight to the asteroid 2016NO3 based on the averaged equations of the spacecraft motion. We 

solved the simulation and the mission design problems for several different variants of the 

spacecraft design parameters. 

1. Introduction 

Over the past decade, there has been a significant increase in interest in the study of asteroids, comets 

and small satellite planets. This is due to the shifting of the research vector toward the solution of 

applied problems: counteraction to asteroid and comet hazard [1] and development of small solar 

system objects with the purpose of extraction of minerals [2]. 

When designing research missions, there is a problem of the development of spacecraft control 

schemes in the fields of bodies attraction with complex geometric shapes. The gravitational force 

between the elementary masses in such bodies is not sufficient to form the bodies near-correct 

geometric shape (ellipsoidal and spheroidal surface). Complex geometry produces the gravitational 

field of the complex configuration. The spacecraft's behaviour in this field is significantly different 

from behaviour of spacecraft near ellipsoidal and spheroidal bodies, the shape of which, as well as the 

gravitational field, may be considered correct in some approximation. The spacecraft motion 

modelling and the development of control schemes near asteroids and comets are possible only under 

the condition that the task of these bodies gravitational field formalization was solved with the 

prescribed accuracy. If however to take into consideration the centre of masses displacement, cavities 

and voids in the object structure, and the uneven distribution of density [3], it becomes difficult to 

solve the problem of these objects gravitational field formalization. Since the overloaded model of 

gravitational potential makes the task of the spacecraft motion modelling and the task of finding 

optimal sustainable control schemes virtually non-solvable. Thus, the task is to find a balance between 

the accuracy of the object's potential presentation and the convergence property of the task. 

In a number of sources, the problem of finding an accurate mathematical description of the 

gravitational fields of different objects was addressed. Thus, in the paper [4], the authors address the 

polygonal method of presenting the gravitational potential of asteroid 4769 Castalia as a formal model. 
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A comparison takes place of the proposed approach with the model of point attracting centre. In the 

paper [5], the authors present a comparative analysis of the polygonal model and the model of point 

attracting centre for the asteroid Cleopatra 216. In the paper [6], the authors present a comparative 

analysis of the gravitational potential presented in the form of series expanded into spherical, 

spheroidal, ellipsoidal functions for Martian moons. In the paper [7], the authors address the position 

of equilibrium points for 23 different asteroids in their polygonal models of gravitational fields. 

The drawbacks of the approaches addressed are their cumbersomeness when using in the problems 

of spacecraft flight dynamics and the necessity to know in advance the physical properties of the 

objects - geometry and mass distribution. Modelling the gravitational field of objects whose properties 

and structure are not known in advance within the models described is not possible. 

In this paper, the authors provide a comparative analysis of the methods of modelling the 

gravitational field of the object with a complex geometric shape, using asteroid 2016NO3as an 

example. This choice is due to the availability of a sufficient amount of studied material on this 

asteroid [8], [9], [10] that provides a fundamental basis for correlation the modelling results. In 

addition, the asteroid is massive enough to ignore the uneven distribution of its gravitational field in 

space [10]. 

From the demonstration of the developed countries use the technology to systematically target the 

use of nanosatellites. The main areas of commercial use of the nano-class spacecraft are currently 

providing communication and retransmission of information for public and commercial consumers, as 

well as obtaining information from remote sensing of the Earth. For small remote sensing spacecraft, 

the desire to obtain high-resolution images necessitates the use of low orbits.  

The paper analyses the optimal transition between non-planar orbits of a nanosatellite with low-

thrust engines. Since the spacecraft has a single engine (taking into account the characteristics of the 

nano-class spacecraft), the acceleration from the thrust of the engines is constant in magnitude and 

directed along the binormal or transversal. The purpose of this work is to develop a method for 

modeling the controlled motion of a spacecraft with low-thrust engines for non-planar flights between 

low Earth orbit (LEO) and the orbit of a near-Earth asteroid 2016NO3. 

2. Mathematical model of controlled motion 

Under the action of low thrust, the motion of the apparatus can be described by Newton's equations of 

the theory of perturbed motion.  
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eccentricity; p  is the focal parameter;   is the argument of periapsis; i  is the inclination;   is the 

epoch;   is the true anomaly; t  is the current time;  , ,
T

r na a aa  is the acceleration vector 

with it’s the components in orbital frame. 

The long duration of the controlled process and the cyclical changes in the phase coordinates 

determine the feasibility of the transition to averaged equations. To carry out the averaging procedure, 

we move from the derivatives of the osculating elements in time to the derivatives of the latitude 

argument. The system of equations (1) – (6) will take the form: 
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Due to the need to maintain the orientation of the spacecraft relative to the asteroid, the use of 

thrust directed along the radius vector is difficult and in the future it is assumed that two accelerations 

are used for control - binormal (perpendicular to the plane of the orbit) and transversal. Using this we 

get a transformed system of equations (7) – (13) to the systems: 
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Here 
0n na a  is the binormal acceleration component; 

0a a   is the transversal acceleration 

component;  1, 0, 1n    is the on-off binormal acceleration component function; 

 1, 0, 1    is the on-off transversal acceleration component function. Due to energy limitations, 

only one engine can be switched on at a time, either by binormal or by transversal that is; 

 1n    . (20) 
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3. Choosing the method of optimal control 

3.1. Controlling structure on the turn  

To determine the optimal control structure on the turn, we will solve the problem of the shortest flight 

duration. In accordance with the maximum principle, it is necessary to select such coordinates of the 

switching points of the engine iu  that deliver the maximum to the Hamiltonian H :  
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We rewrite the Hamiltonian in the form: 
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Since 
0H  does not depend on the control, the maximum of the Hamiltonian under the technical 

restriction (20) is achieved under the following conditions:  
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The graphs of the functions  H u  and  nH u  are sinusoids with the same period (Fig. 2). 

Therefore, to ensure the maximum of the Hamiltonian, there must be no more than four engine 

switching points on the turn. For example, for a certain point in time for the values  H u  and 

 nH u  shown in Figure 2, the control structure on the turn will have the form as shown in figure 3. 

  
Figure 2. Schematic representation of engine 

switching points to the  H u  and  nH u .
 

Figure 3. Control structure on a turn, 

corresponding to the figure 2. 

 

3.2. Averaged equations of motion  

For an optimal control structure on the turn (23), we average the equations (14) – (19) over a time 

interval equal to one period of the satellite's rotation. Denoting by  A ,  1 ,  2 ,   ,  i ,  u  the 



Секция: Математическое моделирование физико-технических процессов и систем 

Simulation of mission with low-thrust spacecraft to near-Earth asteroid 

VI Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2020)  680 

averaged values of the derivatives 
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After performing the integration, and denoting 1u , 2u , 3u , 4u  are the arguments of the latitude of the 

engine switching points and going to the slow-time t as the new variable, the averaged equations will 

have the form: 
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When constructing algorithms for controlling the spacecraft motion with a low thrust, it is 

necessary to take into account that even small perturbing forces lead to significant deviations of the 

device from the calculated trajectory. It is known that the influence of the non-spherical Earth gravity 

field of is mainly described by the second term of the expansion of the gravitational field potential in 

the spherical functions. Therefore the long changes in the orbital elements due to the influence of 

corrective acceleration and the influence of the off center gravity field of the Earth can be described by 

the following system of equations: 
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3.3. The solution of time-optimal tasks on the orbital transfer  

Let's write the boundary conditions as: 
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Where  1 2, , , , ,
T

A i u  x  is the state vector. We formulate a variational time-optimal 

problem about the interorbital transfer: it is necessary to choice the controlled functions  iu t  which 
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provide the transfer of the state point from the position 
0x  to the position 

1x  in the minimum time 

under the differential equations of motion (24) – (28) and boundary conditions (29). The acceleration 

value 0a  is considered to be set. 

Let’s solve the problem using the Pontryagin maximum principle. Let us introduce the co-state 

vector  
1 2

, , , , ,
T

A i u      ψ  and construct the Hamiltonian:  
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From the Hamilton maximum condition we find: 
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Let's write a co-state system: 
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4. Conclusion 

The paper analysed the optimal transfer between non-planar orbits of a nanosatellite with low-thrust 

engines. Since the spacecraft has a single engine (taking into account the characteristics of the nano-

class spacecraft), the acceleration from the thrust of the engines is constant in magnitude and directed 

along the binormal or transversal. The purpose of this work is to develop a method to choosing and 

modeling the controlled motion of a spacecraft with low-thrust engines for non-planar flights between 

low Earth orbit (LEO) and the orbit of a near-Earth asteroid 2016NO3. 
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