Разрушение и восстановление спиральных вихревых пучков

М.В. Брецько Крымский Федеральный университет им. В. И. Вернадского Крым, Россия mihailbretcko4@gmail.com

Ю.А. Егоров Крымский Федеральный университет им. В. И. Вернадского Крым, Россия yuriyegorov@cfuv.ru Я.Е. Акимова Крымский Федеральный университет им. В. И. Вернадского Крым, Россия Ak1mova.yana@yandex. ru

С.И. Халилов Крымский Федеральный университет им. В. И. Вернадского Крым, Россия server.khalilov.94@mail.ru

Аннотация—В данной работе на примере вихревого четырехугольного спирального пучка рассмотрено возмущение в виде непрозрачного экрана. Было показано, что если экран не перекрывает область максимума спирального пучка, то он способен восстановить свою прежнюю форму в дальней зоне дифракции. Если же возмущение даже локально перекрывает яркую область пучка, то возмущенный пучок переходит в новое устойчивое состояние через цепочки рождения и уничтожения оптических вихрей.

Ключевые слова— структурная устойчивость, спиральный пучок, спектр вихрей.

1. Введение

Восстановление исходной структуры волнового фронта параксиальных вихревых пучков после прохождения через непрозрачные препятствия впервые была обнаружена еще во второй половине XX столетия при формировании бесселевых пучков на аксиконах [1] и узких кольцевых апертурах [2]. В последние два десятилетия развитие компьютерных технологий резко стимулировало интерес физиков из различных областей естествознания, фотоники и информатики к этому [3]. необычному явлению Среди многообразия структурированных световых пучков [4-6] особое место занимают спиральные вихревые (СВ) пучки [7], содержащие бесконечное число мод Лагерра-Гаусса (ЛГ). Чтобы пучок был устойчивым при распространении в свободном пространстве необходимо организовать амплитуды и фазы мод ЛГ в нем особым образом. Более того, сопротивляемость пучка к внешним возмущениям также зависит от тонкой структуры потоков энергии при возмущениях, внешних которое заставляет их восстанавливать собственную форму после воздействия внешнего возмущения. Именно эту проблему мы и рассмотрим в данной работе.

2. Возмущение Лагерр-Гауссовой моды

В работе мы будем рассматривать спиральный пучок с четырёхугольной формой образующей, где кривая (образующая) задана в комплексной параметрической форме $\zeta = \zeta(t), t \in [0, 2\pi]$, а их комплексная амплитуда задается в интегральной форме

А.В.Воляр Крымский Федеральный университет им. В. И. Вернадского Крым, Россия volyar@cfuv.ru

С.И. Якубов Крымский Федеральный университет им. В. И. Вернадского Крым, Россия yakubov-selim@mail.ru

$$\Psi\left(\mathbf{r} \left| \zeta(t), t \in [0, 2\pi] \right) = e^{-r^2} \int_{0}^{2\pi} \left| \zeta'(t) \right| \times$$

$$\times \exp\left\{ 2\zeta^*(t) r e^{i\varphi} - \left| \zeta(t) \right|^2 + i \Phi(t|\zeta) \right\} dt,$$
(1)
The $\mathbf{r} = (x, y) = (r \cos \phi, r \sin \phi) - 2D$ becomes the set of th

 $\Phi(t|\zeta) = 2 \int_0^t \text{Im} \{\zeta^*(\tau)\zeta'(\tau)\} d\tau$ является четырёхкратной ориентированной областью сектора, заметаемой двумерным радиус-вектором, соединяющим начало координат с точкой $\zeta(t)$, когда точка движется вдоль кривой, $\zeta'(t)$ обозначает производную.

Возмущение спирального вихревого пучка означает возмущение каждой ЛГ моды в его составе. Каждая *т*-я ЛГ в составе мода становится источником вторичных мод с различными радиальными числами p и ТЗ ℓ обоих знаков:

$$\Psi^{(\text{pert})}\left(\mathbf{r}\big|\zeta\right) = \sum_{m\geq 0} c_m \sum_{p\geq 0} \sum_{\ell=-\infty}^{\infty} C_{p,\ell}^{(m)} \mathrm{LG}_{p,\ell}(\mathbf{r}) .$$
⁽²⁾

Амплитуды вторичных $C_{p,\ell}^{(m)}$ мод зависят от типа внешнего возмущения $T(\mathbf{r})$ и задаются соотношением

$$C_{p,\ell}^{(m)} = \frac{2^{|\ell|+1}p!}{\pi (p+|\ell|)!} \int_{\mathbb{T}^2} T(\mathbf{r}) LG_{0,m}(\mathbf{r}) LG_{p,\ell}^*(\mathbf{r}) d^2\mathbf{r} .$$
(3)

Для компьютерного моделирования необходимо ограничить число членов в трех суммах в выражении (2). Первая сумма по числу *m* ограничивается условием квантования [8]. Для четырёхугольного пучка она включает только 8 членов, где достаточно использовать моды с $4m = 4 \div 36$. Ограничение остальных двух сумм по p и ℓ требует численных оценок и сравнения с экспериментом. Рис. 1 иллюстрирует пример возбуждения вторичных ЛГ мод в пучке с m = 16. Как показано на рис. 1(а), моды с отрицательными топологическими зарядами (T3) ($\ell < 0$) возникают только тогда, когда параметр возмущения а вдоль оси х значительно превышает положение максимума $a_c = 2,65$ для 8-ми квантованного СВ пучка.

При этом они вносят существенный вклад только в ЛГ моды с большими ℓ числами. Поэтому для всего СВ пучка необходимо учитывать вторичные ЛГ моды с

отрицательными ТЗ вплоть до $\ell = -5$ и положительными ТЗ – вплоть до $\ell = 10$. Совсем иначе происходит возбуждение вторичных ЛГ мод с высшими радиальными p числами, пример которых иллюстрирует рис.16. Если учесть только пару ЛГ мод с малыми радиальными числами p, то построить возмущенный СВ пучок невозможно. Поэтому для качественного воспроизведения возмущенных СВ пучков необходимо учитывать моды с радиальными числами вплоть до p=8.

Рис. 1. Экспериментальные спектры вторичных мод $C_{p,\ell}^{(m)}$ возмущенной исходной моды LG_{0.16}, a = 2,65, (a) p = 0, (б) $\ell = 8$

3. РАЗРУШЕНИЕ ЛАГЕРР-ГАУССОВЫХ МОД В СОСТАВЕ ВОЗМУЩЕННЫХ СПИРАЛЬНЫХ ВИХРЕВЫХ ПУЧКОВ

В качестве модели для цифрового анализа возьмём экран с узкой квадратной прорезью в области максимума СВ пучка. При расчете использовались безразмерные $(x, y) \rightarrow (x/w_0, y/w_0),$ переменные $Z = z / z_0$ безразмерный параметр возмущения $a \rightarrow a / w_0$. Непрозрачный экран размещался вблизи максимума $x_1 = a_c = 2,65$, и смещался вдоль *x*-оси. Рис. 2(а)-(в) иллюстрируют случай, когда край экрана только касается максимума пучка, не перекрывая его. Распределение интенсивности в возмущенной области слегка искажается (рис. 2(а)). Во внешней области возмущенной стороны пучка возникают слабые минимумы и максимумы интенсивности, что сразу же немного ухудшает форму пучка вдоль остальной части, а в возмущенной области картины распределения фазы возникло лва дополнительных оптических вихря. При распространении происходит внутренняя перестройка картины оптических вихрей (рис. 2(б), Z = 1), и форма максимума частично искажается. В дальней зоне дифракции (рис. 2(B), Z = 30) форма максимума восстанавливается с учетом ее поворота на $\pi/2$, но распределение интенсивности остается слегка неоднородным. Совсем иначе ведет себя пучок, если край экрана перекрывает часть максимума пучка (a = 2,3). Внутри пучка положение оптических вихрей резкой перестройке. подвергается Однако при распространении, картина оптических вихрей поворачивается вместе с пучком как единое целое.

Рис. 2. Возмущение спирального пучка непрозрачным сектором: распределение интенсивности и фазы для a = 2,65; (a) Z = 0, (б) Z = 1, (в) Z = 30

4. Заключение

Таким образом, мы проанализировали процесс перестройки структуры четырехугольного СВ пучка, вызванного действием в виде непрозрачного экрана. При использовали методы компьютерного этом мы моделирования совместно экспериментом, с рассматривая дальнюю зону дифракции СВ пучка. Мы обнаружили, что асимметричное возмущение в виде экранирования части пучка, не затрагивающего область максимума, позволяет СВ пучку частично восстановить исходную форму. Однако, если оптический нож отрезает часть максимума, то возмущенный СВ пучок переходит в новое устойчивое состояние в дальней зоне дифракции через цепочки дислокационных реакций.

Благодарности

Работа выполнена при поддержке РФФИ (№ 20-37-90066 в части «методы измерения спектра оптических вихрей», № 20-37-90068 в части «экспериментальные результаты») и гранта Государственного Совета Республики Крым в части «Спиральные вихревые пучки».

ЛИТЕРАТУРА

- Lit, J.W.Y. Focal depth of a transmitting axicon / J.W.Y. Lit, R. Tremblay // Journal of the Optical Society of America. – 1973. – Vol. 63. – P. 445-449. DOI: 10.1364/JOSA.63.000445.
- [2] Sheppard, C.J.R. Depth of field in scanning microscope / C.J.R. Sheppard, T. Wilson // Optics Letters. – 1978. – Vol. 3. – P. 115-117. DOI: 10.1364/OL.3.000115.
- [3] Shen, Y. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities / Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan // Light: Science & Applications. – 2019. – Vol. 8. – P. 1-29. DOI:10.1038/s41377-019-0194-2.
- [4] Forbes, A. Structured light / A. Forbes, M. de Oliveira, M.R. Dennis // Nature Photonic. – 2021. – Vol. 15. – P. 253-262. DOI:10.1038/s41566-021-00780-4.
- [5] Shen, Yi. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser / Yi. Shen, Xi. Yang, D. Naidoo, Xing Fu, A. Forbes // Optica. – 2020. – Vol. 7(7). – P. 820-831. DOI:10.1364/OPTICA.414397.
- [6] Shen, Yi. SU (2) Poincaré sphere: A generalized representation for multidimensional structured light / Yi. Shen, Zh. Wang, X. Fu, D. Naidoo, A. Forbes // Physical Review A. – 2020. – Vol. 102. – P. 031501. DOI:10.1103/PhysRevA.102.031501.
- [7] Абрамочкин, Е.Г. Спиральные пучки света / Е.Г. Абрамочкин, В.Г. Волостников // Успехи Физических наук. – 2004. – Т. 47. – С. 1177-1203. DOI: 10.3367/UFNr.0174.200412a.1273.
- [8] Абрамочкин, Е.Г. Современная оптика гауссовых пучков / Е.Г. Абрамочкин, В.Г. Волостников. – М.: Физматлит, 2010. – 184 с.