# Разработка информационной системы организации работ производственного цеха

H.A. Стадник<sup>l</sup>, A.B. Золотухин $^{l}$ , B.B. Мокшин $^{l}$ 

<sup>1</sup>Институт компьютерных технологий и защиты информации - Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ, К. Маркса, 10, Казань, Россия, 420111

#### Аннотация

В статье рассматривается разработка информационной системы организации работ производственного цеха, способной автоматически проводить оценку качества продукции, распознавать дефекты на изделиях, используя методы компьютерного зрения и машинного обучения. Для выбора оптимального алгоритма компьютерного зрения был проведен сравнительный анализ методов компьютерного зрения, для выбора оптимальной модели машинного обучения был проведен сравнительный анализ нейросетевых моделей распознавания образов. В результате сравнительного анализа были выбраны алгоритм компьютерного зрения GrabCut и нейросетевая модель ResUNet. Параметры алгоритма GrabCut были подобраны таким образом, чтобы он сегментировал изделия на конвейерной ленте. Нейросетевая модель была обучена распознаванию дефектов на этих изделиях.

#### Ключевые слова

Информационная система, контроль качества, компьютерное зрение, машинное обучение, нейронные сети

# 1. Введение

На сегодняшний день конкуренция на рынке производства вынуждает искать решения по оптимизации процессов сборки, контроля качества и выпуска продукции. Поэтому поиск решений по автоматизации контроля качества и выпуска изделий представляет собой важный прикладной раздел и позволяет решить задачи по оптимизации производства [1-2]. Контроль качества продукции на практике сводится к решению задачи распознавания дефектов на поверхностях выпускаемых изделий. Методы компьютерного зрения и машинного обучения зарекомендовали себя в качестве эффективных решений задач распознавания изображений в производственных задачах.

## 2. Основная часть

Для реализации информационной системы контроля качества выпускаемой продукции необходимо отобрать лучшие методы компьютерного зрения и машинного обучения.

Для определения оптимального метода сегментации изображения для выявления дефектов на изделиях, было проведено сравнение следующих методов компьютерного зрения: RegionGrowing, NormalizedCuts, WaterShed, MeanShift, FloodFill и GrabCut [2]. Сравнение методов проводилось по скорости алгоритма в задачах обработки изображений (на задаче обработка 1000 изображений 512x512 рх), способность алгоритма выделять на входных данных мелкие детали, сегментировать входные данные, распознавать и классифицировать на них объекты. Исходя из полученных данных в работе вычислялась степень универсальности метода с рассмотрением полученных результатов.

Следующая задача разрабатываемой информационной системы — определение дефектов на изделиях с помощью методов машинного обучения [3]. Для того, чтобы определить оптимальную модель для решения задачи анализа дефектов, было проведено сравнение

нейросетевых архитектур, таких как: многослойный перцептрон (MLP), рекуррентная нейронная сеть (RNN), сверточная нейронная сеть (CNN) и глубокая нейронная сеть (DNN) [4].

### 3. Заключение

Сравнение проводилось по скорости и точности работы модели. Для решения задачи распознавания были выбраны следующие нейросетевые модели: MLP-300 (MLP), LSTM (RNN), LeNet5 (CNN), ResUNet (DNN). Обучение происходило с помощью набора данных, состоящем из изображений поверхностей изделий, на которых присутствуют дефекты 4 видов в различных количествах и комбинациях.

В Таблице 1 приведены результаты сравнительного анализа нейросетевых моделей на задаче распознавания.

**Таблица 1** Сравнительный анализ моделей машинного обучения

| Название модели | Скорость классификации (с.) | Точность классификации (%) |
|-----------------|-----------------------------|----------------------------|
| MLP-300 (MLP)   | 8                           | 43,4                       |
| LSTM (RNN)      | 10                          | 88,398                     |
| LeNet5 (CNN)    | 10                          | 85,53                      |
| ResUNet (DNN)   | 19                          | 90,56                      |

По результатам сравнительного анализа лучшие результаты показали метод GrabCut и модель ResUNet. После обучения нейронная сеть модели R начала классифицировать дефекты на поверхности изделий в наборе данных, сегментированном GrabCut, с точностью более 75%.

На Рисунке 1 представлен вариант классификации дефектов двух типов на одном изделии.

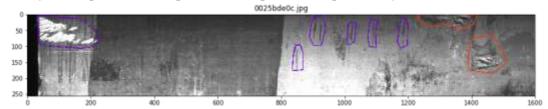



Рисунок 1: Классификация дефектов двух типов на поверхности изделия

Результат работы разработанного ПО демонстрирует высокую точность определения дефектов на изделиях, тем самым автоматизирует процесс контроля качества продукции на конвейерных лентах производственного цеха.

## 4. Литература

- [1] Мокшин, В.В. Разработка модуля информационной системы диагностики состояния грузоподъемных механизмов / В.В. Мокшин, А.П. Кирпичников, И.М. Якимов, З.Х. Захарова // Вестник Технологического университета. − 2017. − Т. 20, № 18. − С. 120-126.
- [2] Yong, Zh. GrabCut image segmentation algorithm based on structure tensor / Zh. Yong, Y. Jiazheng, L. Hongzhe, L. Qing // The Journal of China Universities of Posts and Telecommunications. 2017. Vol. 24(2). P. 38-47.
- [3] Мокшин, В.В. Распознавание образов транспортных средств на основе эвристических данных и машинного обучения / В.В. Мокшин, И.Р. Сайфудинов, А.П. Кирпичников, Л.М. Шарнин // Вестник Технологического университета. − 2016. − Т. 19, № 5. − С. 130-137.
- [4] Ciresan, D.C. Convolutional neural network committees for handwritten character classification / D.C. Ciresan, U. Meier, L.M. Gambardella, J. Schmidhuber // International Conference of Document Analysis and Recognition (ICDAR). 2011. P. 1135-1139.