VIII Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2022) Том 2. Информационные технологии дистанционного зондирования Земли

Расширение возможностей оптико-электронных комплексов для дистанционного зондирования Земли

Е.Н. Сечак

Федеральное государственное образователоьное учреждение высшего образования «Национальный исследовательский университет ИТМО» Санкт-Петербург, Россия evgenysechak@gmail.com

Аннотация-Исследованы пути повышения информационных возможностей оптико-электронных комплексов космических аппаратов видового наблюдения и дистанционного зондирования Земли. Проведен выбор оптической схемы оптико-электронного комплекса. Представлен способ позиционирования сегментированного зеркала, основанный на применении датчика волнового фронта на базе схемы интерферометра радиально-бокового встраиваемого оптико-электронный сдвига, в телескопический комплекс.

Ключевые слова— телескоп, составное зеркало, сегментированное зеркало, адаптивная оптика, датчик волнового фронта.

1. Введение

Создание высокоразрешающих оптико-электронных (ОЭК) дистанционного зондирования комплексов Земли направлено на увеличение поверхности физической светосилы оптической системы и увеличение алгоритмической эффективности работы системы приёма и преобразования информации. Увеличение физической светосилы ОЭК возможно за счёт увеличения площади зрачка и интегрального коэффициента вхолного пропускания оптической системы, что достигается увеличением диаметра входного зрачка и применяемыми оптическими материалами с соответствующим просветляющим покрытием. Проблемами создания крупногабаритных зеркально-линзовых телескопов является уменьшение поверхностной плотности главного зеркала как основного массогабаритного компонента оптической системы телескопа и массогабаритные ограничения, накладываемые как технологическими трудностями, так и системой доставки в космос. Учитывая, что как правило отражающая поверхность главного зеркала - это обычные поверхности второго порядка, обладающие симметрией вращения относительно оси, проходящей через его вершину, то решение проблем достигается, в частности, применением технологии облегчённых зеркал позволяющая создавать главные зеркала телескопов, для которых S^{3/2}/V>7, где S – площадь зеркала, V – объём зеркала. Обеспечение требуемых параметров ОЭК по проницающей и разрешающей способности может быть достигнуто, главным образом, за счет использования принципиально новых схем и конструкций телескопов, а также технологий их создания, поскольку необходимо ориентироваться на имеющиеся средства доставки в космос. а именно обеспечение умеренных массогабаритных характеристик ОЭК [1-2].

А.В. Демин Федеральное государственное образователоьное учреждение высшего образования «Национальный исследовательский университет ИТМО» Санкт-Петербург, Россия dav_60@mail.ru

В этой связи ОЭК нового класса может быть создан на базе главного зеркало (ГЗ) выполненного, как сегментированное (например, James Webb Space Telescope) [3-4].

Применение адаптивной и активной оптики в крупногабаритных ОЭК, позволяют решать задачи по обеспечению контроля формы поверхности сегментированного зеркала, а также позволяют ОЭК быть инвариантными к внешним возмущениям за счет контроля формы поверхности зеркала [4-5].

2. Выбор оптической схемы оптикоэлектронного комплекса

Применяя сейчас линзовую и зеркально-линзовую оптику в космических комплексах, разработчик должен всегда учитывать, что, прежде всего, резко увеличивается вес оптических систем с одной стороны и резко сужается спектральный диапазон, с другой стороны. Практически вся зарубежная космическая оптика сейчас базируется на зеркальных элементах. Исключения составляют широкоугольные системы, в которых зеркальные элементы применяться не могут [1].

Преимущества зеркальных систем по сравнению с линзовыми и зеркально-линзовыми системами:

- 1. Широчайший спектральный диапазон от 0,2 мкм до 12 мкм.
- 2. В несколько раз меньший вес.
- 3. Меньшее число оптических поверхностей.
- 4. Увеличенная светосила телескопа позволяет уменьшить выдержку экспозиции, тем самым уменьшить влияние остаточных сдвигов изображения на качество изображения.

В космическом телескопостроении ведущая роль отводится зеркально-линзовым и зеркальным объективам, имеющим, как правило, только один крупногабаритный элемент, диаметр которого равен диаметру входного зрачка – ГЗ.

Одним из представителей чисто зеркальных систем, активно использующихся в системах ДЗЗ является телескоп, спроектированный по схеме Корша. В ней главная роль в образовании изображения отводится отражающим поверхностям, не вносящим хроматических аберраций. В связи с этим, чисто зеркальные схемы очень удобны для использования в системах, работающих в VIII Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2022) Том 2. Информационные технологии дистанционного зондирования Земли

широких спектральных диапазонах. Рис. 1 оптическая схема Корша состоит из трех соосных асферических зеркал 1, 2 и 3, а для уменьшения виньетирования в систему вводится дополнительное плоское зеркало 4, которое выносит изображение в сторону.

К достоинствам схемы Корша необходимо отнести действительное изображение выходного зрачка и наличие промежуточного изображения, что позволяет исключить бленду, и уменьшить конструкцию телескопа в размерах. Решаемые задачи оптической системой по схеме Корша – высокодетальное многоспектральное наблюдение в том числе совместно в УФ, ВД и ИК диапазонах спектра излучения. Таким образом, для дальнейшей проработки создания способа контроля ГЗ космического телескопа была выбрана оптическая схема Корша.

3. ДАТЧИК ВОЛНОВОГО ФРОНТА

Наиболее важные этапы технологического процесса контроля крупногабаритных зеркал сопровождаются контролем формы рабочей поверхности. Принципиальная схема оптико-механической системы датчика волнового фронта, для контроля формы поверхности зеркала изображена на рис. 1 [5-6].

Работа датчика волнового фронта заключается в следующем: Излучение от точечного источника с помощью поворотного зеркала 5 проходит через объектив коллиматора 6 и попадает в систему интерферометра радиально-бокового сдвиг 9, оптическая система которого собрана на единой кварцевой пластине, предотвращающей его разъюстировку в процессе эксплуатации. Поток излучения, волновой фронт которого сохраняет деформации, внесенные формой поверхности контролируемого объекта, делится светоделителем интерферометра на два потока. Один из пучков проходя по схеме в направлении движения часовой стрелки расширяется в телескопической линзе, поворачивает на 90° плоскость поляризации в фазовой пластине. Благодаря этому проходит, не отражаясь через двухзеркальный отражатель на фазосдвигающий зеркальный блок и отражается им обратно на светоделитель. Другой пучок, проходя по схеме в направлении движения против часовой стрелки отражается двухзеркальным отражателем и сжимается телескопической линзой. Таким образом, второй пучок объединяясь с первым на светоделителе имеет ним направление поляризации и олинаковое с радиальный слвиг. Боковой сдвиг организуется смещением фазосдвигающего зеркального блока. Таким образом, оба потока выходя по единому пути могут интерферировать в зоне их перекрытия, пройдя через проекционный объектив 7. Интерференционная картина проецируется на ФПУ 8.

Рис. 1. Схема Корша с датчиком волнового фронта

4. Заключение

Рассмотрены варианты построения оптических схем телескопов для дистанционного зондирования Земли. Предложена схемотехническая реализация датчика волнового фронта формы поверхности главного зеркала, интегрированная в оптическую схему оптико-электронного комплекса.

Благодарности

Работа выполнена в рамках научноисследовательских работ "Фундаментальные и прикладные вопросы фотоники" на инженерноисследовательском факультете Университета ИТМО.

ЛИТЕРАТУРА

- Ермолаева, Е.В. Адаптивная оптика / Е.В. Ермолаева, В.А. Зверев, А.А. Филатов. – СПб: НИУ ИТМО, 2012. – 297 с.
- [2] Шанин, О.И. Адаптивные оптические системы коррекции наклонов. Резонансная адаптивная оптика / О. И. Шанин. – М.: Техносфера, 2013. – 296 с.
- [3] Saif, B. High-speed interferometry for James Webb Space Telescope testing / B. Saif, L. Feinberg, R. Keski-Kuha // Proc. SPIE. – 2021. – Vol. 11813. – P. 1-11. DOI: 10.1117/12.2570872.
- [4] Шугаров, А.С. Проект китайско-российского телескопа, собираемого на орбите (OAST) / А.С. Шугаров, М.Е. Сачков, И.С. Саванов // Вестник НПО им. С.А. Лавочкина. – 2019. – № 4(46). – С. 6-10. DOI: 10.26162/LS.2019.46.4.001.
- [5] Орешечкин, С.С. Методы контроля линейных и угловых перемещений оптических элементов крупногабаритных космических телескопов в процессе их орбитальной эксплуатации / С.С. Орешечкин // Контенант. – 2019. – Т. 18, № 2–1. – С. 32-43.
- [6] Сечак, Е.Н. Разработка двухканальной схемы контроля сегментированных зеркал для космического телескопа / Е.Н. Сечак, А.А. Чистяков, Г.И. Вахрамеев // Вопросы радиоэлектроники. Серия: Техника телевидения. – 2021. – № 4. – С. 70–80.