Проектирование системы обеспечения теплового режима малого космического аппарата дистанционного зондирования Земли

И.В. Кауров

Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия ivkaur@yandex.ru

Аннотация—Разработаны математические модели теплового состояния малого космического аппарата (МКА) дистанционного зондирования Земли с распределенными и сосредоточенными параметрами. Моделирование теплового состояния МКА произведено с помощью специализированного программного обеспечения Siemens NX и программного пакета Matlab в среде динамического междисциплинарного моделирования сложных технических систем Simulink. Проведён сопоставительный анализ полученных результатов.

Ключевые слова— малый космический аппарат, дистанционное зондирование Земли, система обеспечения теплового режима, тепловое состояние, моделирование.

1. Введение

Создание миниатюрной бортовой аппаратуры (БА), а также компактных оптических систем, способных работать в космическом пространстве, способствует росту числа малых космических аппаратов (МКА), что выявляет необходимость в быстрой и качественной оценке их теплового состояния. Поддержание условий эксплуатации оптических систем является интересной задачей в связи с необходимостью выполнения наиболее сложных требований к окружающей среде.

Небольшие габариты МКА позволяют применять модели на основе дифференциальных уравнений с сосредоточенными параметрами особенно на начальных этапах проектирования аппарата, облегчая таким образом процесс проектирования системы обеспечения теплового режима (СОТР) МКА. Применение тепловых моделей с сосредоточенными параметрами широко распространено при малогабаритной проектировании бортовой аппаратуры космических аппаратов (КА). Тепловые радиоэлектронной расчёты блоков аппаратуры производятся с помощью подобного подхода довольно давно при проектировании, анализе и испытаниях [1, 2, 3, 4].

Данный подход имеет недостаточную точность для крупных КА. Прежде всего это связано с применением активных систем терморегулирования, в отличии от МКА, в которых в большей мере используют пассивные средства терморегулирования. Системы активного тактико-технические терморегулирования имеют характеристики меньшего диапазона, требуют более тонкой настройки для функционирования, что существенно усложняет их применение в МКА. Проектанты всё чаще применяют электрические тонкопленочные нагреватели или холодильники при поддержании рабочей температуры чувствительных

приборов. Существующие активные системы терморегулирования требуют миниатюризации. Только в случае уменьшения их габаритов возможно применение на МКА [5].

Целью данной работы является проведение сопоставительного анализа результатов моделирования в распределенных и сосредоточенных параметрах теплового состояния МКА дистанционного зондирования Земли (ДЗЗ).

2. Основные проектные характеристики МКА

В качестве целевой аппаратуры была выбрана оптикоэлектронная аппаратура (ОЭА) «Аргус», разработки НПП «ОПТЭКС» и ПАО «Красногорский завод им. С.А. Зверева». Необходимо сформировать «вокруг» ОЭА конструкцию корпуса с элементами установки устройств и приборов бортовых обеспечивающих систем при наличии ограничений.

ОЭА предназначена для съёмки земной поверхности в 8-ми мультиспектральных каналах в диапазоне 0,45-0,96 мкм с разрешением 10 м и в 2-х панхроматических каналах в диапазоне 0,5-0,8 мкм с разрешением 5 м.

Были осуществлены основные этапы проектирования, позволяющие представить первоначальный проектный облик МКА. По разработанной математической модели с сосредоточенными параметрами произведён расчёт теплового состояния МКА в системе Matlab. Адекватность модели подтверждена расчётом в распределенных параметрах (Рис. 1).

Рис. 1. Конечно-элементная модель МКА в Siemens NX

VIII Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2022) Том 2. Информационные технологии дистанционного зондирования Земли

Значения рабочей температуры БА, а также значения её тепловыделений приведено в таблице 1.

Таблица I.	ЗНАЧЕНИЯ ТЕПЛОВЫДЕЛЕНИЙ ОСНОВНОЙ БОРТОВС)Й
	АППАРАТУРЫ И ЕЁ РАБОЧАЯ ТЕМПЕРАТУРА	

Бортовая аппаратура (панель)	Теплов ыделен ие, Вт	Рабочая температура, °С
Аккумуляторная батарея (АБ) (-Z)	0,5-10	от -5 до +35
Бортовая система контроля и управления ДОКА-Б278 (БСКУ) (-Z)	5-10	от -50 до +50
Управляющий двигатель-маховик (Мах) (-Z, +Z, средняя панель)	2	от -50 до +50
Блок управления ДУ (БУ ДУ) (-Z)	1-10	от -10 до +40
Блок обработки данных (БОД) (-Z)	5	от -10 до +40
Радиолокационный комплекс (РК) (+Y)	2-7	от -50 до +50
Блок автоматики контроля, управления и регулирования СЭП (БАКУР) (-Y)	1,5-4	от -10 до +40
Бортовое запоминающее устройство (БЗУ) (+Z)	1-3	от -50 до +50
Радиопередающее устройство (РПУ) (+Z)	2-5	от -20 до +40
Блок автоматизированной идентификационной системы (АИС) (+Z)	1-5	от -40 до +70
Универсальная многофункциональная вычислительная система (УМВС) (+Z)	2-5	от -50 до +50
Оптико-электронная аппаратура АРГУС (средняя панель)	5-8	от -30 до +50
Электромагнит (-Y, +Z)	1-11	от -50 до +50

Стоит отметить, что в процессе решения проектной состав целевой залачи определён аппаратуры разрабатываемого МКА для задач экологического мониторинга на основе анализа соответствия технического уровня создаваемого МКА передовым достижениям отечественной и зарубежной науки и техники, а также сравнения МКА по основным техническим и эксплуатационным характеристикам с существующими и разрабатываемыми отечественными и МКА-аналогами, зарубежными оснашёнными мультиспектральными системами наблюдения среднего разрешения.

Конструкция МКА представлена набором твердых тел и плоскостей, аппроксимированных четырехузловой тетраэдальной и плоской прямоугольной сетками элементов. После создания конечно-элементной модели присваивались всевозможные связи, свойства материалов, нагрузки, соответствующие объекты симуляции, а также радиационные характеристики поверхностей.

Тепловые характеристики, радиационные обеспечиваемые на элементах МКА, зависели в большей степени экранно-вакуумной использования от теплоизоляции (ЭВТИ). Была выбрана изоляция марки ЭВТИ – ВВ на основе двусторонних металлизированных использованием пленок с в качестве терморазделительного слоя синтетического ворса, а в качестве облицовочной стеклянную ткань оптического

назначения с отношением оптических коэффициентов AS/ $\epsilon = 0,\,91.$

При проведении расчетов, на этапе структурнопараметрического синтеза в среде динамического междисциплинарного моделирования сложных технических систем Simulink, в конструкции разработанного аппарата выделено n=153 термических узла системы, к каждому из которых было составлено дифференциальное уравнение с учётом разбиения узлов сотовых панелей на внутренние и внешние.

В качестве начальных условий принимались: температура МКА 20 °С, ориентация на Солнце панелью +X, на которой установлены солнечные батареи, высота орбиты 500 км, наклонение 65°, внутренние тепловыделения соответствуют таблице 1, считаем, что бортовая аппаратура работала на трёх витках. В ходе моделирования полёта граничные условия рассчитываются на каждом шаге моделирования.

Полученные результаты имеют достаточно близкие показания температур, что подтверждает адекватность полученных моделей (таблица 2).

БА	Siemens Tmax, C°	Simulink Tmax, C°	Siemens Tmin, C°	Simulink Tmin, C°	Средняя абсолютная погрешность, °(
Аппаратура «АРГУС»	44	46	20	15	3,5
Блок АИС	24	31	4	4	3,5
БСКУ	42	40	16	19	3

Таблица II. РАСЧЁТНЫЕ ТЕМПЕРАТУРЫ ОСНОВНОЙ БА

3. Заключение

В результате проведенных расчетов с применением методики проектирования СОТР МКА был сделан вывод, что средняя абсолютная погрешность расчетных моделей с распределенными и сосредоточенными параметрами составляет порядка 3.2 °C, что является достаточно хорошим показателем.

ЛИТЕРАТУРА

- [1] Алексеев, В.А. Математическое моделирование тепловых процессов малогабаритной бортовой аппаратуры / В.А. Алексеев, Н.С. Кудрявцева, В.В. Малоземов, А.С. Пичулин, А.С. Титова, И.А. Шангин // Вестник МАИ. – 2010. – Т. 17, № 8. – С. 55-61.
- [2] Алексеев, В.А. Расчетно-экспериментальный метод выбора параметров испытательных камер для отработки тепловых режимов бортовой аппаратуры негерметичных космических аппаратов / В.А. Алексеев, Н.С. Кудрявцева, А.С. Титова // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. – 2018. – № 2. – С. 72-88. DOI: 10.18698/0236-3941-2018-2-72-88.
- [3] Алифанов, О.М. Баллистические ракеты и ракеты-носители: пособие для студентов вузов / А.Н. Андреев, В.Н. Гущин. – М.: Дрофа, 2004. – 512 с.
- [4] Jianyin, M. Spacecraft Thermal Control Technologies / Qi Zhong, Qiwei Zhao, Xin Zhao. – Springer Nature Singapore Pte Ltd, 2021. – 360 p.
- [5] Романов, А.А. Цифровая трансформация космического приборостроения / А.А. Романов, Ю.М. Урличич. – Королёв: АО «ЦНИИмаш», 2020. – 397 с.