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Abstract. The method of probabilistic finite modeling of stochastic estimation of image inter-

frame geometric deformations parameters is proposed. The method is based on the 

discretization of the domain of deformation parameters and determination of estimates drift 

probability vector at each iteration (improvement, deterioration and no change of the vector 

with respect to coordinates of optimal values in the parameter space). The models of analyzed 

images and noises are given by the probability densities and the autocorrelation functions. It is 

a feature of the method. The usage of the probability distribution method for estimating the 

image deformations parameters generated by a non-identification relay procedure for a given 

finite number of iterations is considered. The mean square of error and the inter-frame 

correlation coefficient were used as cost estimation functions. Examples confirming the 

adequacy of the developed probabilistic mathematical model are presented. 

1. Introduction 

Estimation of the parameters of image sequence geometric deformations is one of the actual problems 

of image representation and processing. One approach to solve this problem is stochastic estimation 

[1–4]. Asymptotically optimal in terms of convergence rate of the stochastic approximation procedure 

[5, 6] have been developed. They have the highest possible convergence rate, however, they require 

complete a priori information and do not provide an answer to the question of errors in estimating the 

deformation parameters for a finite number of performed iterations. The accuracy capabilities of this 

class procedures are investigated only in asymptotics. 

Approaches to improvement (acceleration) and analysis of the accuracy of estimates of stochastic 

approximation algorithms with a finite number of iterations are known [7]. As a rule acceleration is 

related to allowance for a priori information about the optimal solution, which is given by the finite 

probability density (PD). In the absence of such a priori information, optimal algorithms at finite 

iterations can lead to estimates that are very far from optimal. At the same time, the papers on 

probabilistic analysis of accuracy with a finite number of iterations is clearly not enough, it is 

determined the direction of this paper. 

When modeling the process of deformation parameters estimation, one has to deal with the presence of 

a rather complex set of interfering factors, such as temporal and spatial heterogeneity of image and 

noise characteristics, sensitivity heterogeneity of sensors, impulse noise, etc. By their nature, these 

factors are of a random nature, therefore, when processing real images, both parametric and 

nonparametric a priori uncertainty are almost always present. In the conditions of a priori uncertainty, 

relay stochastic adaptive procedures [8, 9] in the form 
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where i  and i  are functions depending on the parameters of the accepted model of inter-frame 

geometric deformations. 
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where  .F  is Laplace function.  
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When using the interframe correlation coefficient: 
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where  baR ;  is the normalized ACF of image; 
l

a  and 
l

b  - the distance of the mismatch between the 

coordinates of the samples )2(

l
z

j
 and )1(~

l
z

j
 along the axes x  and y  respectively. Similarly, the 

expressions for the probabilities )(


i
 and )(

o

i
 can be obtained. 

For example, Figure 1a shows the graphs of i h



  depending of  the mismatch function (estimation 

error) 
xxh

hh  ˆ  for the situation when estimation parameter is the parallel shift of the image )2(Ζ  

along the coordinate x . The plots are calculated using expressions (6) and (7) with  =1 (curve 1), 

 =4 (curve 2) and  =10 (curve 3). In Figure 1b, the graphs are obtained from relations (8) and (9) 

with  =2 (curve 1),  =4 (curve 2) and  =10 (curve 3). The calculation was performed for images 

with the Gaussian ACF of the correlation radius 5 and the signal-to-noise ratio 10/ 22  
x

g . The 

experimental results (crosses), obtained by statistical modeling on simulated images with similar 
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parameters, synthesized using the wave model [13] are also shown. The experimental results are 

averaged over 150 realizations. It is shown that at  =4 the approximation of the PD of the stochastic 

gradient by the Gaussian law provides satisfactory results. 

    
a)                                                                                    b) 

Figure 1. Examples of EDP. 

3. Determination of PD of  parameter estimates at a given estimation iteration  

On the base of the method of EDP calculation, described above, a method of probabilistic finite 

modeling of the process of stochastic gradient estimation of inter-frame deformation parameters of a 

image sequence has been developed. The technique is aimed at calculating the PD of estimated 

parameters and other probabilistic characteristics. A special feature of the method is that it allows to 

store only the probability distributions of individual estimates instead of multidimensional PD of 

parameter estimates. This has significantly reduced the requirements for the memory required for 

modeling. 

When forming arrays of EDP, the discretization of the parameters domain is used. In this case, with 

regular sampling of parameters for their domain, we obtain an already irregular discretization, at the 

nodes of which the values of the drift probabilities are calculated. To determine the values of EDP 

array at intermediate samples, a linear approximation of this irregular grid is used. It also allows to 

significantly reduce computational costs. 

Another feature in the modeling of each estimation iteration and the calculation of the PD of the 

estimated parameters is the adaptive limitation of the boundaries of the modeling window in the 

parameter space. At the same time, in order to preserve accuracy, the EDP correction is provided in 

the nodes of the sampled domain near the borders of the modeling window. 

Figure 2 shows examples of PD w  of the error   of parallel shift estimate at iterations of relay 

estimation with a gain element that varies according to the law  ktvar
t

 1
0
  (Figure 2a) and 

constant const  (Figure 2b). In both cases, the shift mismatch is 5 sample grid steps, the size of the 

local sample is 4 . The figures show that for const  the estimation process stabilizes starting 

from approximately 520 iteration. After that, a further increase in the number of iterations does not 

lead to an increase in the estimation accuracy. This allows for a given class of images to find, in 

particular, the gain matrix parameter   that provides the required estimation accuracy, as well as the 

number of iterations for the vector to achieve estimates of the stabilization domain. At var
t
  the 

process of PD formation does not have an equilibrium state, and the variance of estimation 

theoretically constantly decreases. The accuracy of the generated estimates in this case depends on the 

number of iterations and the parameter k  of parameter 
t

  reduction. This is illustrated by the graphs 

of Figure 2c, which shows the dependences of the variances of estimates 2
  on the number of 

iterations for the same modeling conditions. Here curve 1 corresponds to var
t
 , curve 2 

corresponds to const . It is shown the variance stabilizes at const  and at var
t
  

monotonously decreases with an increase in the number of iterations. 
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(c) 
Figure 2. PD and variance of parallel shift estimate at constant and decreasing step of estimation. 

 

4. Conclusion 

When modeling the process of stochastic gradient estimation of image inter-frame geometric 

deformations parameters, it is necessary to take into account the complex of influencing factors. In 

particular, the factors independent of the parameters of stochastic gradient procedure are the PD and 

ACF of images and interfering noise, as well as the type of CF of estimation quality. The 

characteristics of the procedure that can be influenced include the method of calculating the stochastic 

gradient, the gain matrix, the number of iterations, and the initial approximation of the vector of 

parameter estimates. For the feasibility of the simulation procedure, it is advisable to use a minimum 

set of values, characterizing independent factors sufficient to find probabilistic parameter estimates as 

a function of the controlled characteristics of the procedure. As such values EDPs are used. 

To obtain the calculated expressions for parameter EDPs, the normalization of the stochastic gradient 

of the cost function is used with increasing the size of the local sample in which it is located. 

Expressions are obtained for situations where stochastic gradient estimation of the mean squared error 

and the inter-frame correlation coefficient are used as the cost functions. 

When modeling the stochastic gradient estimation process, at each iteration an adaptive limitation of 

the bounds of the modeling window in the parameter space is applied. At the same time, in order to 

preserve the accuracy of the modeling, a correction of the drift probabilities is performed at the nodes 

of the sampled parameters domain near the borders of the modeling window. This consideration of the 

probability of finding the estimates outside the modeling window made it possible to reduce 

computational costs while maintaining the adequacy of the model several times. 

The proposed method of probabilistic finite modeling can be used to determine the accuracy and 

probability characteristics of stochastic algorithms for estimating image interframe geometric 

deformations for a given number of iterations. 
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