Применение математического моделирования в проектировании анизогридных сетчатых силовых конструкций нерегулярной структуры

В.О. Каледин^а, Т.В. Бурнышева^а, О.А. Штейнбрехер^а

^а Новокузнецкий институт (филиал) ФГБОУ ВО Кемеровский государственный университет, 654041, ул. Циолковского 23, Новокузнецк, Россия

Аннотация

В работе рассматривается задача проектирования композитных сетчатых анизогридных силовых конструкций, являющихся элементами агрегатов космических летательных аппаратов, на примере определения толщин многоступенчатой окантовки выреза сетчатой цилиндрической оболочки. Предлагается двухэтапный подход, включающий в себя рациональное и оптимальное проектирование. На первом этапе методами рационального проектирования определяются ограничения на толщины окантовок выреза для задачи оптимизации. На втором этапе решается задача оптимизации конструкции по массе с учетом ограничений по прочности и габаритам. Представлены алгоритмы, используемые для решения задач рационального и оптимального проектирования, основанные на дискретном моделировании и методах вычислительного эксперимента.

Ключевые слова: сетчатые анизогридные силовые конструкции; рациональное проектирование; оптимальное проектирование; методы вычислительного эксперимента

1. Введение

Сетчатые анизогридные композиционные оболочки (рис. 1), выступающие составными элементами агрегатов космических летательных аппаратов, относятся к силовым конструкциям, набор структурных элементов которых должен обеспечивать прочность и жесткость оболочки под действующими нагрузками. Отличительной особенностью данных конструкций является система пересекающихся спиральных и кольцевых ребер. Оболочка может иметь общивку, вымотка которой согласно технологии производства композитов осуществляется одновременно с реберной структурой, в результате которой ребра и общивка представляют единую монолитную конструкцию. Различают сетчатые анизогридные композиционные оболочки регулярной и нерегулярной структуры.

Рис. 1. Сетчатые анизогридные конструкции: а – с общивкой; б – без общивки.

2. Метод моделирования и инструмент численного расчета

Методы оптимального проектирования сетчатых оболочек регулярной структуры хорошо известны. В случае нарушения регулярности ребер возникают сложности, которые вынуждают проектировщиков применять дискретный подход при моделировании конструкций рассматриваемого класса, а также методы, основанные на проведении вычислительных экспериментов на разработанных дискретных моделях сетчатых аназогридных конструкций [1].

При решении задачи оптимизации силовой конструкции по массе необходимо не только задать целевую функцию, но и определить ограничения на структурные параметры и параметры состояния оболочки. Уточнить ограничения возможно в результате решения задачи рационального проектирования оболочки, при этом можно использовать подход, основанный на предварительной редукции конечно-элементной модели к виду аппроксимации функций отклика численно-аналитическим методом [2].

В качестве инструмента построения конечно-элементной модели, расчета напряженно-деформированного состояния и проведения вычислительного эксперимента используем исследовательский пакет прикладных программ «Композит

НК Анизогрид» [3]. К преимуществам данного программного комплекса следует отнести, в том числе, встроенный язык программирования «Ядро» [4], предназначенный для формирования регулярных массивов данных, и программный модуль реализации вычислительного эксперимента. Исходный код, написанный на языке «Ядро», может повторно применяться для задания похожих по структуре объектов моделирования. Это позволяет проводить параметрические исследования конструкций с быстрой перестройкой модели при варьировании входных параметров.

3. Структурное описание конструкции

Решалась задача оптимизации по массе сетчатой анизогридной оболочечной конструкции нерегулярной структуры, которая содержит вырезы, усиленные тремя окантовками различной толщины.

Конструкция представляет оребреную оболочку в форме усеченного конуса, имеет двухслойную общивку и оребрение: 160 пар спиральных ребер и 21 кольцевое ребро. Длина отсека - 44,884lh, длина окружности по передней кромке 237,02lh, по задней кромке 234,72lh (lh - половина высоты ромбической ячейки, образованной спиральными ребрами). Оболочка подкреплена двумя торцевыми шпангоутами прямоугольного сечения, имеет три люка, закрытых крышками, и три выреза под гаргроты (рис. 2). Все вырезы усилены окантовками переменной толщины, которые делятся на три зоны (рис. 2).

Рис. 2. Конечно-элементная модель конструкции.

Крышки люков по форме совпадают с формами люков и имеют толщину 0,094lh. Задней кромкой оболочка соединена с переходным кольцом, закрепленным на 20 опорах. Переходное кольцо состоит из стенки, передней и задней полок. Стенка выполнена в виде цилиндрической оболочки высотой 3,76lh. Полки представляют собой кольцевые ребра. К передней кромке оболочки приложена сжимающая сила P=10174,45 кH и изгибающий момент M=0,128 P кH·м.

4. Формальная постановка задач оптимизации и рационального проектирования, алгоритм решения задачи

Современная технология изготовления анизогридных композитных сетчатых оболочек предполагает формирование композиционного материала одновременно с изготовлением самого изделия. Так как свойства армированного материала существенно зависят от технологических факторов, то точное задание физико-механических свойств композиционному материалу при изготовлении затруднительно. Поэтому в серии однотипных изделий может наблюдаться существенный разброс в значения физико-механических характеристик материала. Значительное влияние на данные характеристики оказывают и технологические несовершенства конструкции.

Сказанное выше позволяет рассматривать математическую модель статического деформирования силовой конструкции на уровне «черного ящика» [2], в которой внутреннее строение моделируемого объекта не раскрывается и фиксируются причины реакции объекта на приложенные воздействия:

$$q = K(p)r, \tag{1}$$

где q – вектор переменных состояния (перемещений, напряжений и деформаций);

r – вектор переменных воздействий (приложенные силы);

К – оператор модели, который отображает элементы пространства воздействий на элементы пространства состояний;

p – вектор параметров модели, включающий «внутренние» характеристики моделируемого объекта (физикомеханические константы материалов, геометрические размеры конструкции, размеры сечений конструктивных элементов и т.п.). Задача рационального проектирования конструкции заключается в определении значений структурных параметров модели, которые удовлетворяют изначально заданным ограничениям, без условия минимума критерия оптимизации. Для сетчатых оболочек в качестве ограничений структурных параметров рассматривают габариты конструкции (её радиус и высота), заданное число спиральных и/или кольцевых ребер и т.д., а также ограничения по прочности, жесткости и устойчивости. Запишем задачу рационального проектирования конструкции.

Известно:

- начальные значения структурных параметров модели Х₀,

- вектор переменных воздействий r,

- модель реакции конструкции на воздействия q = K(p)r.

Требуется определить: структурные параметры модели $X \subseteq p$, при которых выполняются ограничения структурных параметров конструкции $F(p) \ge 0$ и параметров состояния $\Phi(q) \ge 0$.

Решение данной задачи в виде вектора структурных параметров модели не единственно, это позволяет уточнить границы приемлемых значений структурных параметров и использовать их в задаче оптимизации конструкции по массе.

Задача оптимизация конструкции по массе формулируется следующим образом: найти значения структурных параметров *p*, обеспечивающих минимум критерия качества (массы) при условии, что параметры состояния *q* удовлетворяют системе заданных ограничений (по прочности, жесткости и устойчивости и т.д.).

Формально задача оптимизации конструкции по массе на основе модели (1) может быть поставлена в следующем виде.

Известно:

- начальные значения структурных параметров модели X0,

- вектор переменных воздействий r,

- модель реакции конструкции на воздействия q=K(p)r.

Требуется определить: структурные параметры модели $X \subseteq p$, при которых выполняются ограничения структурных параметров $F(p) \ge 0$ и ограничения параметров состояния $\Phi(q) \ge 0$, обеспечивающие минимум целевой функции $M(p) \rightarrow \min$. В качестве целевой функции M(p) выбирается масса конструкции.

На рисунке 3 представлена схема решения задачи оптимизации конструкции по массе.

Рис. 3. Блок-схема алгоритма решения задачи оптимизации конструкции по массе.

5. Решение задачи рационального проектирования

Для проведения вычислительного эксперимента была построена конечно-элементная модель упрощенного аналога реального отсека космического летательного аппарата. Упрощенная конструкция представляла собой цилиндрическую оболочку сетчатой структуры, идентичную описанному выше отсеку космического летательного аппарата, с приложенной к верхней кромке сжимающей силой *P*=10174,45 кН. На середине образующей оболочки располагался шестиугольный вырез, компенсированный тремя окантовками переменной толщины. Размеры выреза составляли: две ромбических ячейки в высоту и шесть в ширину. На рисунке 4-а представлена схема расположения окантовок и обшивки оболочки со следующими обозначениями: *d*_{обш} – толщина обшивки конструкции, *E*_{обш} – модуль упругости обшивки, E_{δ} – модуль упругости внутренней (ближней к вырезу) окантовки, E_c – модуль упругости средней окантовки, E_{δ} – модуль упругости дальней от выреза окантовки, d_{δ} – толщина внутренней окантовки (d_{δ} = 0,563 l_h), d_c – толщина средней окантовки, d_{δ} – толщина дальней от выреза окантовки.

а - входные параметры (толщина общивки и окантовок); б - план-матрица.

За начальный вариант толщин окантовок, предложенный конструкторами, были приняты следующие обозначения: d_{δ}^{0} – начальная толщина внутренней окантовки, d_{c}^{0} – начальная толщина средней окантовки, d_{∂}^{0} – начальная толщина дальней от выреза окантовки.

Варьируемыми факторами при проведении вычислительного эксперимента выступали толщины средней и внешней окантовок при фиксированной толщине внутренней окантовки выреза; откликом - коэффициенты концентрации напряжений в элементах конструкции вблизи выреза при действии осевой силы *P*. Для уточнения ограничений на толщины окантовок были построены аппроксимирующие функции концентрации максимальных продольных напряжений ребер и общивки в следующем виде:

$$\tilde{Z}(\rho^{1}, \rho^{2}, ..., \rho^{n}) = \sum_{i} L_{i}(\rho) Z_{i}', \qquad (2)$$

где Z'_i – поля откликов, рассчитанные при векторе структурных параметров ρ_i ;

 L_i – базисные функции; $\rho = [d_{\delta}, d_c, d_{\delta}]^T$.

В качестве базисных функций L_i выступали дробно-рациональные функции от толщин окантовок, общий вид аппроксимирующей функции \tilde{Z} по насыщенному плану имел следующий вид:

$$\begin{split} \widetilde{Z} &= Z_{0}^{\prime}(d_{\delta}^{0}, d_{c}^{0}, d_{\delta}^{0}) + Z_{1}^{\prime} \frac{d_{\delta} - d_{\delta}^{0}}{d_{\delta} - \widetilde{d}_{\delta}} + Z_{2}^{\prime} \frac{d_{c} - d_{c}^{0}}{d_{c} - \widetilde{d}_{c}} + Z_{3}^{\prime} \frac{d_{\delta} - d_{\delta}^{0}}{d_{\delta} - \widetilde{d}_{\delta}} + \dots + \\ &+ Z_{n}^{\prime} \frac{(d_{\delta} - d_{\delta}^{0})^{\eta_{1}} (d_{c} - d_{c}^{0})^{\eta_{2}} (d_{\delta} - d_{\delta}^{0})^{\eta_{3}}}{(d_{\delta} - \widetilde{d}_{\delta})^{\eta_{1}} (d_{c} - \widetilde{d}_{c})^{\eta_{2}} (d_{\delta} - \widetilde{d}_{\delta})^{\eta_{3}}} , \end{split}$$
(3)

где n – число опытов в план-матрице эксперимента, η_1 , η_2 , η_3 – степени дробно-рациональных функций, \tilde{d}_{δ} , \tilde{d}_c , \tilde{d}_{∂} – полюса дробно-рациональных функций,

 $Z'_0, Z'_1, Z'_2, ..., Z'_n$ - отклики, рассчитанные в ходе прохождения вычислительного эксперимента. Подбор полюсов дробно-рациональных функций производился, исходя из следующих условий:

$$\begin{split} E_{o\delta u}d_{o\delta u} + E_{\delta}\tilde{d}_{\delta} &= 0, \\ E_{o\delta u}d_{o\delta u} + E_{c}\tilde{d}_{c} &= 0, \\ E_{o\delta u}d_{o\delta u} + E_{\delta}\tilde{d}_{\delta} &= 0 , \end{split}$$
(4)

За начальное приближение был принят следующий вариант толщин окантовок: толщина внутренней окантовки равна $d_{\delta}^{0} = 0,563 l_{h}$, толщина средней окантовки $d_{c}^{0} = 0$, толщина дальней от выреза окантовки $d_{\delta}^{0} = 0$.

Аппроксимирующая функция (3) с учетом начального приближения и нормирования толщин окантовок d_c и d_d по фиксированной толщине внутренней окантовки d_d^0 будет иметь вид:

$$\widetilde{Z}(d_c', d_{\partial}') = Z_0'(d_{\delta}^0, d_c^0, d_{\partial}^0) + \overline{Z}_2 \frac{d_c'}{d_c' + d_{o\delta u}'} \frac{E_{o\delta u}}{E_c} + \overline{Z}_3 \frac{d_{\partial}'}{d_{\partial}' + d_{o\delta u}'} \frac{E_{o\delta u}}{E_{\partial}}$$

$$\tag{5}$$

где \overline{Z}_i - весовые коэффициенты базисных дробно-рациональных функций, $Z'_0(d^0_{\delta}, d^0_{c}, d^0_{\delta})$ - концентрация напряжений в элементах конструкции при начальном варианте толщин окантовок, d'_c и d'_{δ} - нормированные толщины средней и дальней окантовок соответственно.

Число экспериментов согласно план-матрице (рис. 4-б) превышает число весовых коэффициентов функций вида (5), поэтому расчет коэффициентов \overline{Z}_i проводился методом наименьших квадратов на основе полученных откликов Z'_i .

В результате анализа результатов вычислительного эксперимента – коэффициентов концентрации напряжений в структурных элементах оболочки были построены следующие аппроксимирующие зависимости:

- функция аппроксимации коэффициентов концентрации максимальных сжимающих напряжений σ_s во внутреннем слое общивки вблизи внешней окантовки выреза

$$\widetilde{Z}_{1}(d'_{c}, d'_{\partial}) = 2,5009 - 0,5783 \frac{d'_{c}}{d'_{c} + 0,038} - 0,1437 \frac{d'_{\partial}}{d'_{\partial} + 0,038} ;$$
(6)

- функция аппроксимации коэффициентов концентрации максимальных сжимающих напряжений *σ*_s во внешнем слое обшивки вблизи внешней окантовки выреза

$$\widetilde{Z}_{2}(d'_{c}, d'_{\partial}) = 3,7325 - 1,1459 \frac{d'_{c}}{d'_{c} + 0,038} - 0,1109 \frac{d'_{\partial}}{d'_{\partial} + 0,038};$$
(7)

- функция аппроксимации коэффициентов концентрации максимальных растягивающих напряжений *σ*_t во внутреннем слое общивки вблизи внешней окантовки выреза

$$\widetilde{Z}_{3}(d'_{c}, d'_{\partial}) = 3,3176 - 0,2736 \frac{d'_{c}}{d'_{c} + 0,104} - 0,6989 \frac{d'_{\partial}}{d'_{\partial} + 0,104} ;$$
(8)

- функция аппроксимации коэффициентов концентрации максимальных растягивающих напряжений *σ*_t во внешнем слое общивки вблизи внешней окантовки выреза

$$\widetilde{Z}_{4}(d'_{c}, d'_{\partial}) = 21,9988 - 7,9171 \frac{d'_{c}}{d'_{c} + 0,104} - 1,1939 \frac{d'_{\partial}}{d'_{\partial} + 0,104} ;$$
(9)

- функция аппроксимации коэффициентов концентрации максимальных напряжений σ_s в спиральных ребрах с наклоном влево вблизи внешней окантовки выреза

$$\widetilde{Z}_{5}(d'_{c},d'_{\partial}) = 2,1609 - 0,1775 \frac{d'_{c}}{d'_{c} + 0,067} - 0,2224 \frac{d'_{\partial}}{d'_{\partial} + 0,067} ;$$

$$(10)$$

- функция аппроксимации коэффициентов концентрации максимальных напряжений σ_s в кольцевых ребрах конструкции вблизи внешней окантовки выреза

$$\widetilde{Z}_{6}(d'_{c}, d'_{\partial}) = 3,2098 + 0,9334 \frac{d'_{c}}{d'_{c} + 0,067} - 2,0286 \frac{d'_{\partial}}{d'_{\partial} + 0,067} .$$
(11)

На рисунке 5 представлены линии уровня функций $\tilde{Z}_1(d'_c, d'_{\partial})$, $\tilde{Z}_2(d'_c, d'_{\partial})$, $\tilde{Z}_3(d'_c, d'_{\partial})$ и $\tilde{Z}_4(d'_c, d'_{\partial})$. Используем их для определения ограничений на значения толщин средней и внешней окантовок вырезов, обеспечивающих снижение концентрации напряжений в общивке и ребрах оболочки по сравнению с начальным приближением.

На рисунке 6 изображены области допустимых значений толщин средней d'_c и внешней d'_{∂} окантовок выреза при снижении концентрации напряжений в обшивке конструкции вне окантовок. При построении областей использовались функции все аппроксимирующие функции. Все ограничения выполняются в верхней правой области, которая выделена темным цветом.

Анализ рисунков 5 и 6 позволяет определить ограничения на аппроксимирующие функции коэффициентов концентрации напряжений. Выпишем ограничения для задачи оптимизации с учетом снижения концентрации напряжений в общивке и ребрах вне окантовок по сравнению с начальным вариантом ($d_{\delta}^{0} = 0,563 l_{h}$, $d_{o}^{0} = 0$, $d_{o}^{0} = 0$.): - на 10%

 $\begin{cases} \widetilde{Z}_{1}(d'_{c}, d'_{\partial}) \geq 2,25; \\ \widetilde{Z}_{2}(d'_{c}, d'_{\partial}) \geq 3,36; \\ \widetilde{Z}_{3}(d'_{c}, d'_{\partial}) \geq 2,99; \\ \widetilde{Z}_{4}(d'_{c}, d'_{\partial}) \geq 19,7; \\ \widetilde{Z}_{5}(d'_{c}, d'_{\partial}) \geq 19,7; \\ \widetilde{Z}_{6}(d'_{2}, d'_{\partial}) \geq 1,94; \\ \widetilde{Z}_{6}(d'_{2}, d'_{\partial}) \geq 2,89; \\ d'_{c} \geq 0,01; \\ d'_{\partial} \geq 0,06; \end{cases}$

- на 15%

$$\begin{split} & \left\{ \widetilde{Z}_{1}(d'_{c}, d'_{\partial}) \geq 2, 13; \\ & \widetilde{Z}_{2}(d'_{c}, d'_{\partial}) \geq 3, 17; \\ & \widetilde{Z}_{3}(d'_{c}, d'_{\partial}) \geq 2, 82; \\ & \widetilde{Z}_{4}(d'_{c}, d'_{\partial}) \geq 18, 69; \\ & \widetilde{Z}_{5}(d'_{c}, d'_{\partial}) \geq 1, 84; \\ & \widetilde{Z}_{6}(d'_{2}, d'_{\partial}) \geq 2, 73; \\ & d'_{c} \geq 0, 11; \\ & d'_{\partial} \geq 0, 18. \end{split}$$

6. Решение задачи оптимизации конструкции по массе

Используя методы вычислительного эксперимента, получим аппроксимирующие функции выражающие напряжения в спиральных σ_d и кольцевых σ_c ребрах:

$$\sigma_{\partial}(d'_{c}, d'_{\partial}) = -12,34 + \frac{4,89}{d'_{c}} + 0,0307 d'_{\partial},$$

$$\sigma_{c}(d'_{c}, d'_{\partial}) = 8,0395 - \frac{25,831}{d'_{c}} - 0,10984 d'_{\partial}$$

(12)

(13)

а - сжимающих напряжений σ_s во внутреннем слое обшивки; б - сжимающих напряжений σ_s во внешнем слое обшивки;
 в - растягивающих напряжений σ_t во внутреннем слое обшивки; г - растягивающих напряжений σ_t во внешнем слое обшивки.

Рис. 6. Области допустимых значений толщин окантовок d'_c и d'_{∂} выреза при снижении концентрации напряжений в обшивке и ребрах вне окантовок: а – на 10%; б – на 15%.

Приведем эти ограничения к виду *ω* ≥ 0 и учтем ограничения, полученные в результате решения задачи рационального проектирования (12)-(13). тогда система ограничений будет имеет вид:

$$\begin{cases} \tilde{Z}_{1}(d'_{c}, d'_{\partial}) - 2,25 \ge 0; \\ \tilde{Z}_{2}(d'_{c}, d'_{\partial}) - 3,36 \ge 0; \\ \tilde{Z}_{3}(d'_{c}, d'_{\partial}) - 2,99 \ge 0; \\ \tilde{Z}_{4}(d'_{c}, d'_{\partial}) - 19,7 \ge 0; \\ \tilde{Z}_{5}(d'_{c}, d'_{\partial}) - 19,7 \ge 0; \\ \tilde{Z}_{5}(d'_{c}, d'_{\partial}) - 1,94 \ge 0; \\ \tilde{Z}_{6}(d'_{2}, d'_{\partial}) - 2,89 \ge 0; \\ d'_{c} - 0,01 \ge 0; \\ d'_{\partial} - 0,06 \ge 0; \\ \sigma_{\kappa p.} - \sigma_{\partial}(d'_{c}, d'_{\partial}) \ge 0; \\ \sigma_{\kappa p.} - \sigma_{c}(d'_{c}, d'_{\partial}) \ge 0. \end{cases}$$
(14)

В качестве целевой функции можно использовать массу окантовок, т.к. общая масса конструкции без окантовок остается неизменной:

$$\Delta M = \rho(S_c d'_c + S_{\partial} d'_{\partial}), \tag{15}$$

где *р* - плотность материала окантовок,

 S_{c} , S_{∂} - площади окантовок.

Решение задачи оптимизации проводился в модуле оптимизации программного комплекса «Композит НК Анизогрид» на основе алгоритма [5], основанного на симплексном поиске с представлением нелинейных ограничений

R-предикатом. В результате работы алгоритма были получены следующие значения: $d_c = 2,25$ мм и $d_{\partial} = 2,1$ мм.

7. Заключение

При рекомендованных толщинах окантовок вырезов производился поверочный расчет напряженнодеформированного состояния отсека космического летательного аппарата.

Литература

- [1] Бурнышева, Т.В. Применение методологии вычислительного эксперимента в задачах проектирования и диагностики анизогридных конструкций космических летательных аппаратов. / Т.В. Бурнышева // Научно-технический вестник Поволжья. 2014. №6. С. 98-102.
- [2] Казначеева, О.К. Идентификация параметров упругости и жесткости конструкций из армированных материалов / О.К. Казначеева, В.О. Каледин Новочеркасск, ЛИК, 2012. – 135 с.
- [3] Ульянов, А.Д. «Композит-НК» комплекс программ для автоматизации программирования численного решения задач механики конструкций/ А.Д. Ульянов, В.О. Каледин, Я.С. Крюкова, А.Е. Гилева// Кулагинские чтения: техника и технологии производственных процессов. XVI международная научно-практическая конференция: в 3 частях. – Издательство: Забайкальский государственный университет (Чита), 2016. – С. 141-145.
- [4] Каледин, В.О. Концепции языка программирования «Ядро». / В.О. Каледин Новокузнецк. РИО НФИ ГОУ ВПО «КемГУ», 2010. 47 с.
- [5] Каледин, В.О. Алгоритм оптимизации многоэлементных конструкций с ограничениями по проч-ности и габаритам. / В.О. Каледин, О.А. Штейнбрехер // Научно-технический вестник Поволжья – 2016. – №3. – С. 113-115.