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Abstract. We define frames for a finite dimensional Hilbert space HM as the complete systems
in HM . The basic frame families are classified such as tight and Parseval frames,equal norm
frames and equiangular frames. The statements of some problems that have already become
famous in the theory of frames are given. Considerable progress has been made in addressing
some of them in recent years.

1. Introduction
A finite frame is a spanning set for a finite dimensional Hilbert space HM that generalizes the
notion of a basis by relaxing the need for linear independence. In other words, a family of vectors
Φ = {φn}Nn=1 is a frame for a real or complex HM if there are constants 0 < A ≤ B < ∞ such
that for all x ∈ HM ,

A∥x∥2 ≤
N∑

n=1

|⟨x, φn⟩|2 ≤ B∥x∥2.

In a finite-dimensional space the concept of a frame is equivalent to the completeness of the
system, i. e. span{φn}Nn=1 = HM .

In practice, frames are chiefly used in two ways. The synthesis operator is defined by

V ∗ : h ∈ HN →
N∑

n=1

hnφn ∈ HM .

As such the M ×N matrix representation V ∗ of the synthesis operator has the frame elements
{φn}Nn=1 as columns.

The analysis operator of the frame is the map V : HM → HN given by (V x)n = ⟨x, φn⟩, n =
1, . . . , N.

Frames are used to redundantly decompose signals y = V x, before synthesizing the
corresponding frame coefficients z = V ∗y = V ∗V x, and so the frame operator V ∗V : HM → HM

is often analyzed to determine how well this process preserves information about the original
signal x.

In particular, if the frame bounds are equal, the frame operator has the form V ∗V = AIM ,
and so signal reconstruction is rather painless: x = 1

AV
∗V x; in this case the frame is called

tight.
Oftentimes, it is additionally desirable for the frame elements to have equal or unit norms,

in these cases the frames are equal- norm or unit norm respectively.
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Moreover, the worst-case coherence between unit norm frame elements µ := max
n̸=n′

|⟨φn, φn′⟩|
satisfies

µ2 ≥ N −M

M(N − 1)
,

and equality is achieved precisely when the frame is tight with |⟨φn, φn′⟩| = µ for all distinct
pairs n, n′ ∈ {1, . . . , N} . In this case the frame is called an equiangular tight frame.

2. The Paulsen problem
The frame Φ = {φn}Nn=1 is called tight if the equality A = B is possible in the definition.

In the case A = B = 1 it’s called Parseval frame.
The frame Φ is called equal norm frame if there exists α > 0 such that ∥φn∥ = α, n =

= 1, . . . , N.
The analysis operator of the frame is the map V : HM → HN given by (V x)n = ⟨x, φn⟩, n =

= 1, . . . , N.

Its adjoint, V ∗, is the synthesis operator : h ∈ HN →
N∑

n=1
hnφn.

The frame operator is the positive, self adjoint invertible operator S = V ∗V on HM .
The Gramian is the operator G = V V ∗ on HN .
The unit norm frame Φ is called equiangular frame if there exists β ≥ 0 such that

|⟨φn′ , φn
′′ ⟩| = β for all n′ ̸= n

′′
.

The frame Φ is called equiangular tight frame (ETF) if it is is an equiangular and tight
simultaneously.

If Φ is Parseval frame with analysis operator V, then V is an isometry, since

∥V x∥22 =
N∑

n=1

|⟨x, φn⟩|2 = ∥x∥2, x ∈ HM .

Conversely, if an N ×M matrix V is an isometry, then it is the analysis operator of the Parseval
frame.

Parseval frames (and only such frames) satisfy the reconstruction identity

x =
N∑

n=1

⟨x, φn⟩φn,

or x = V ∗V x, S = V ∗V = IHM .
The following theorem was the first in the Frame theory, and maybe one of the most

important.
Theorem 1. (M.A.Naimark[1]) If Φ = {φn}Nn=1 is Parseval frame for HM , then there exists

an N -dimensional Hilbert space HN , and an orthonormal basis {bn}Nn=1 ⊂ HN such that HM is a
linear subspace of HN and φn = PHM bn for all n, where PHM denotes the orthogonal projection
of HN onto HM .

The converse statement is also true.
Theorem 2. If {bn}Nn=1 is an orthonormal basis for HN , and HM ⊂ HN is anyM -dimensional

linear subspace, then Φ = {PHM bn}Nn=1 is Parseval frame for HM , where PHM denotes the
orthogonal projection of HN onto HM .

Proof. Denote by φn = PHM bn, n = 1, . . . , N. We have for x ∈ HM

∥x∥2 = ∥PHMx∥2 =
N∑

n=1

|⟨PHMx, bn⟩|2 =
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=

N∑
n=1

|⟨x, PHM bn⟩|2 =
N∑

n=1

|⟨x, φn⟩|2,

i.e. Φ is Parseval frame.
�

The theorems 1 and 2 are generalized in [6] to frames of a general form, which are projections
of Riesz bases. Projections of orthogonal systems (generally speaking, incomplete) are considered
in detail in [9].

Parseval frame {PHM bn}Nn=1 from the theorem 2 is not equal-norm frame. In fact, the first
equal-norm Parseval frame was built by A.I.Maltsev in [8] (of course not using such terms). The
article [8] did not fall into the field of view of specialists in the Frame theory; its results will
undoubtedly find interesting applications.

Almost all known equal-norm Parseval frame designs are based on a discrete Fourier transform
matrix. The elements of this matrix are formed by complex numbers, however, the correct choice
of columns and rows of the matrix and simple arithmetic operations with them lead to matrices
of synthesis operators for real frames with given properties.

Theorem 3. Equal norm Parseval Frame Φ = {φn}Nn=1 exists in RM for any N ≥ M.
Proof. Define the following orthogonal N ×N matrices separately for even and odd number

N. For N = 2k + 1 we have

√
2

N



1√
2

. . . . . . . . . 1√
2

1 cos 2π
N cos 4π

N . . . cos 2π(N−1)
N

0 sin 2π
N sin 4π

N . . . sin 2π(N−1)
N

. . . . . . . . . . . . . . .

1 cos 2πk
N cos 4πk

N . . . cos 2πk(N−1)
N

0 sin 2πk
N sin 4πk

N . . . sin 2πk(N−1)
N


.

If M is odd, we delete the last N −M rows and obtain the matrix(
φ1| φ2| . . . | . . . | φN

)
of the synthesis operator (remind that its columns are frame vectors) for the equal-norm Parseval
Frame in RM .

If M is even, we delete the first N−M rows and obtain the similar matrix for the equal-norm
Parseval Frame in RM .

For N = 2k we define a little different orthogonal matrix

√
2

N



1√
2

. . . . . . . . . 1√
2

1 cos 2π
N cos 4π

N . . . cos 2π(N−1)
N

0 sin 2π
N sin 4π

N . . . sin 2π(N−1)
N

. . . . . . . . . . . . . . .

1 cos 2π(k−1)
N cos 4π(k−1)

N . . . cos 2π(k−1)(N−1)
N

0 sin 2π(k−1)
N sin 4π(k−1)

N . . . sin 2π(k−1)(N−1)
N

1√
2

− 1√
2

. . . . . . − 1√
2


.

If M is odd, we delete the last N −M rows and obtain the equal-norm Parseval Frame in RM .
If M is even, we delete the first and N −M −1 last rows and again we obtain the equal-norm

Parseval Frame in RM .
�
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Any Frame has a Parseval frame as a natural satellite. Indeed, if {en}Nn=1 is an orthonormal
basis for HN , then

Sx = V ∗V x = V ∗

(
N∑

n=1

⟨x, φn⟩en

)
=

=
N∑

n=1

⟨x, φn⟩V ∗en =
N∑

n=1

⟨x, φn⟩φn.

Hence,

⟨Sx, x⟩ =
N∑

n=1

|⟨x, φn⟩|2 .

Moreover, {φn}Nn=1 is a frame with bounds A,B > 0 if and only if AIM ≤ S ≤ BIM .
Also we have that

x = SS−1x =

N∑
n=1

⟨S−1x, φn⟩φn =

=

N∑
n=1

⟨x, S−1φn⟩φn =

N∑
n=1

⟨x, S−1/2φn⟩S−1/2φn,

i.e S−1/2{φn}Nn=1 is Parseval frame.
Now we define the distance between frames and after that we’ll show following [4] that this

frame is the nearest Parseval frame to the frame Φ.
The ℓ2-distance between two frames Φ = {φn}Nn=1 and Φ′ = {φ′

n}Nn=1 in HM is defined by

dist(Φ,Φ′) :=

√√√√ N∑
n=1

∥φn − φ′
n∥2.

Theorem 4. If Φ = {φn}Nn=1 is a frame for HM with the frame operator S, then
{S−1/2φn}Nn=1 minimizes the ℓ2-distance between Φ and all possible choices of Parseval frames.

Proof. Let {em}Mm=1 be an orthonormal eigenvector basis for HM with respect to S and
respective eigenvalues {λm}Mm=1. Then we have

N∑
n=1

∥φn − S−1/2φn∥2 =
N∑

n=1

∥∥∥∥∥
M∑

m=1

⟨φn, em⟩em − 1√
λm

⟨φn, em⟩em

∥∥∥∥∥
2

=

=
N∑

n=1

M∑
m=1

|⟨φn, em⟩|2
∣∣∣∣1− 1√

λm

∣∣∣∣2 = M∑
m=1

∣∣∣∣1− 1√
λm

∣∣∣∣2 N∑
n=1

|⟨φn, em⟩|2 =

=
M∑

m=1

∣∣∣∣1− 1√
λm

∣∣∣∣2 λm =
M∑

m=1

(
λm − 2

√
λm + 1

)
.

Now let {gn}Nn=1 be an arbitrary Parseval frame for HM . Using again the basis of eigenvectors
and its eigenvalues we obtain

N∑
n=1

∥φn − gn∥2 =
N∑

n=1

∥∥∥∥∥
M∑

m=1

⟨φn, em⟩em − ⟨gn, em⟩em

∥∥∥∥∥
2

=
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=

N∑
n=1

M∑
m=1

|⟨φn, em⟩ − ⟨gn, em⟩em|2 =

=

M∑
m=1

N∑
n=1

(
|⟨φn, em⟩|2 + |⟨gn, em⟩|2 − 2Re

[
⟨φn, em⟩⟨gn, em⟩

])
=

=

M∑
m=1

(
N∑

n=1

|⟨φn, em⟩|2 +
N∑

n=1

|⟨gn, em⟩|2 − 2Re

[
N∑

n=1

⟨φn, em⟩⟨gn, em⟩

])
=

=
M∑

m=1

(
λm + 1− 2Re

[
N∑

n=1

⟨φn, em⟩⟨gn, em⟩

])
.

Now we estimate the last term

M∑
m=1

Re

[
N∑

n=1

⟨φn, em⟩⟨gn, em⟩

]
≤

≤
M∑

m=1

N∑
n=1

|⟨φn, em⟩| |⟨gn, em⟩| ≤

≤
M∑

m=1

√√√√ N∑
n=1

|⟨φn, em⟩|2
√√√√ N∑

n=1

|⟨gn, em⟩|2 =
M∑

m=1

√
λm.

Now we see that
N∑

n=1

∥φn − gn∥2 ≥
M∑

m=1

(
λm − 2

√
λm + 1

)
=

=

N∑
n=1

∥φn − S− 1
2φn∥2.

Since
{
S− 1

2φn

}N

n=1
is a Parseval frame for HM , the theorem follows.

�
The frame {S−1/2φn}Nn=1 is not an equal-norm frame.
If Φ = {φn}Nn=1 is an equal norm Parseval frame for RM , then S = IdM and ∥φn∥2 =

M/N, n = 1, . . . , N.
We say that Φ is an ϵ-nearly equal norm Parseval frame if

(1− ϵ)IdM ≤ S ≤ (1 + ϵ)IdM ,

and

(1− ϵ)
M

N
≤ ∥φn∥2 ≤ (1 + ϵ)

M

N
, n = 1, . . . , N.

Let ENPF be the set of all equal norm Parseval frames. The Paulsen problem is one of
the most known and attractive problems in frame theory.

Paulsen problem. For every ϵ-nearly equal norm Parseval frame Φ, is

inf
Ψ∈ENPF

dist2(Φ,Ψ)
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bounded by a fixed polynomial in ϵ and M?
Early results gave bounds on the squared distance that were polynomial in ϵ, M and N [2, 3].

The first bound that was polynomial in ϵ and M was obtained in [7]. They proved that squared
distance is at most O(ϵM13/2).

A much simpler way to a better bound was found in [5].
Theorem 5. For any ϵ-nearly equal norm Parseval frame Φ there is Ψ ∈ ENPF such that

dist2(Φ, Ψ) ≤ 20ϵM2.

Cahill and Casazza [2] gave a family of examples of ϵ-nearly equal norm Parseval frames
where the

dist2(Φ, Ψ) ≥ cϵM.

It is an interesting open question to close the gap.
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