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Abstract. We consider in this paper the adaptation of heuristics used for programming
non-deterministic games to the problems of discrete optimization, in particular, some
heuristic methods of decision-making in various discrete optimization problems. The
object of each of these problems is programming anytime algorithms. Among the
problems solved in this paper, there are the classical traveling salesman problem and
some connected problems of minimization for nondeterministic finite automata.
Considered methods for solving these problems are constructed on the basis of special
combination of some heuristics, which belong to some different areas of the theory of
artificial intelligence. More precisely, we shall use some modifications of unfinished
branch-and-bound method; for the selecting immediate step using some heuristics, we
apply dynamic risk functions; simultaneously for the selection of coefficients of the
averaging-out, we also use genetic algorithms; and the reductive self-learning by the
same genetic methods is also used for the start of unfinished branch-and-bound method
again. This combination of heuristics represents a special approach to construction of
anytime-algorithms for the discrete optimization problems. This approach can be
considered as an alternative to application of methods of linear programming, and to
methods of multi-agent optimization, and also to neural networks.

1. Introduction. A brief survey of the discrete optimization problems
We consider in this paper the adaptation of heuristics used for programming non-deterministic
games to the problems of discrete optimization, in particular, some heuristic methods of decision-
making in various discrete optimization problems (DOP). The object of each of these problems
is programming anytime algorithms, i.e., the algorithms, which can provide a near-to-optimal
solution in real time. The basic purposes of the paper are practical questions of construction of
algorithms, as well as the creation of the corresponding theory. Let us briefly list the considered
problems, more precisely, the classes of considered problems.

First, it is the classical traveling salesman problem (TSP; [1] etc.). Certainly, an universal
methods for solving TSP simply cannot exist. Some last years, the authors of papers for heuristic
methods of TSP-solution consider most often so-called metric TSP. For their solving, some
methods (of linear programming, of multi-agent optimization, etc.) are used; [1, 2, 3, 4, 5] etc.
However, the classical branch-and-bound method (BBM) can also be used not only for the exact
(optimal) solution of considered TSP, but also for quasi-optimal heuristic solutions. We shall
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write below about these things more detailed.
Second, these are some related problems of minimization for nondeterministic finite automata

(Rabin-Scott automata, NFA). Probably, the main for them is state-minimization, i.e., the
problem of constructing NFA, which defines the given regular language and has minimum
possible number of states. Since 1970 (i.e., since [6]), there are a few changes in description
of the exact algorithms for this problem: all the algorithms are exponential relative to the
number of states of considered NFA. The last argument is true because all the algorithms need
to construct equivalent automaton of canonical form (or, maybe, some similar graphs or other
objects). Let us remark, that from the point of view of the theory of complexity of algorithms,
all the algorithms of [6, 7, 8, 9, 10, 11] are equivalent.

Besides, there are other problems for NFA-minimization, the following ones:

• edge-minimization [12, 13];

• and also the star-height-minimization. There exists two solutions of the last problem ([14],
and also [15] with the simplification of the proof [16]). However, the authors think that
there is impossible to make a computing algorithm on basis of these papers.

Third, this is the problem of minimization of disjunctive normal forms (DNF). The exact
algorithms for this minimization are obtained for ages (and are considered in the classical
textbooks for first-year students), however the computer programs making on basis of such
solutions cannot work in real time even for the number of variables, which is equal to 20, except,
certainly, for a lot of trivial cases. The unified approach of this paper is used in some versions
of computer programs.

Let us remark, that, certainly, these groups of problems do not formulate the whole set of
problems, which can be heuristically solved by the methods considered in this paper. Let us
also mention, for instance, [17]. Some other groups of problems are given in the conclusion, and,
probably, each DOP can be solved in such a way.

The methods of solution DOP, considered in this paper, are constructed on the basis of special
combination of some heuristics, which belongs to some different areas of the theory of artificial
intelligence. Firstly, we shall use some modifications of unfinished branch-and-bound methods.
Secondly, for the selecting immediate step using some heuristics, we use dynamic risk functions.
Thirdly, simultaneously for the selection of coefficients of the averaging-out, we also use genetic
algorithms. Fourthly, the reductive self-learning by the same genetic methods is also used for
the start of unfinished branch-and-bound method. Let us consider now the detailed description
of these heuristic methods of DOP-solution.

2. Unfinished branch-and-bound method
We shall consider the branch-and-bound method for arbitrary DOP; however, sometimes we shall
consider BBM-examples for the most known DOP, i.e., TSP. We shall use for it the following
names:

• “accidental TSP”, when all the elements of the TSP-matrix are generated by the variate
having the given equipartition law;

• “metric TSP”, when we consider towns as the accidental points of the unit square (both
the coordinate have the given equipartition law), and the elements of the TSP-matrix are
their distances. And here is also evident the following symmetric condition: aij = aji for
each possible i and j.

• “quasi-metric TSP”, when all the elements of the metric TSP-matrix are multiplied a
posteriori by a random number, which is obtained by a given normal low; see [18] etc.
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Some last years, the papers for metric TSP are mostly published. The consideration of metric
TSP as the problems of linear programming or the applications of so-called methods of multi-
agent optimization was started long before 2000, [19, 20]. And the quasi-metric TSP, which is
almost not considered, is more interesting, because of the following:

• first, it is more closely to various practical problems;

• second, various heuristics can be checked up here, which are not connected to use of an
arrangement of cities on a plane; moreover, the reduction of this problem to a problem of
linear programming is here ineffectively;

• and third, the simplification of the TSP-matrix by one step of BBM is here “less significant”,
than in other TSP-variants.

Therefore, the metric TSP is the most important scope for algorithms considered in this paper.
In [1], the only exact BBM was considered; it finishes by constructing the optimal solution.

And in practice, we can rarely obtain the exact TSP-solution using only algorithms of [1]. Using
some special programming techniques (e.g., special data structures for quick making the next
step of BBM, organization of swapping by the programmer), we can only a little improve the
situation. In fact, each of such programming techniques is a new heuristics, which is used in
addition to considered applying BBM. However, we are considering the exact solution of TSP
(and other DOP) only, and, for now, are not considering the things connected with anytime
algorithms. Before the formulation such algorithms, let us consider the following definitions.

Considering a BBM-step, we have to designate the problem for the next solution, obtained
by reduction of dimension, exactly the right problem (like [1] etc.). For example, the right
problem of TSP is obtained when we include the edge between two considered towns; and the
right problem of NFA-minimization is obtained when we include the selected grid (see [9] etc.).
The other alternative, i.e., when we make a decision about the absence of some element in the
optimal solution (e.g., if we consider TSP not containing the edge between two considered towns)
is designated by the left problem. It is evident, that the object of each modification of BBM (for
each DOP) is to obtain the case, when the probability of belonging the optimal solution in the
right problem is more then the same probability for the left problem; we make this thing using
some special heuristics. The explanation of this fact is trivial: dimension of the right problem
is less than the left one.

The simple heuristics, which reforms the usual BBM into the unfinished one (and on basis
of unfinished BBM we construct any anytime algorithms in this paper), is the following. Each
time, when we obtain the next right problem (let us call it problem T ) we make at the same
time also the sequence of the right (sub)problems (SRP), i.e., T , then the right problem of
T , then the right problem of the right problem of T , etc. Certainly, we make each time also
the corresponding left problems, i.e., the left problem of T , then the left problem of the right
problem of T , etc. This process finishes:

• when we obtain a trivial problem (e.g., of dimension 1), then we use its solution (i.e., its
bound, and also the obtained path, and similar behavior) by the current quasi-optimal
solution of the considered anytime algorithm;

• or when we obtain the big value of the bound, for example, if this value is more than the
current (existing) quasi-optimal solution.

Let us remark, that in practice such process of SRP-constructing does not require a lot of time,
and the increasing the dimension of the list of problems for the solution in the future is very
reasonable.

Thus, we have described the simple process of constructing the anytime algorithm on the
basis of the given version of BBM. And it is unlikely, that such process is described here at the
first time (it is really very simple), however, the authors have not the references for this thing.
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Let us also remark, that this algorithm of SRP-constructing is used as the sub-algorithm not
only for the unfinished BBM (like this section), but also for so called algorithm of tournament
self-learning.

3. Nondeterministic games and dynamic estimation of a position.
Dynamic risk functions in backgammon
Because of space limitations, the rules of backgammon are not presented in the paper. Among
scientific works devoted to programming of this game, we mention the papers [21, 22, 23].
However, the authors of this paper hope, that the use of dynamic risk functions (DRF) considered
here simplifies conventional methods of neural network programming and learning; they are an
alternative to these methods.

What is the difference between backgammon (and other nondeterministic games) and, to say,
chess (or other deterministic games) from the programming standpoint? The difference is that
the game tree constructed for backgammon includes not only the vertexes where the players
choose a next move but also those where they wait for a particular realization of a random
event. Therefore, the standard minimax method is to be generalized for programming of search
in nondeterministic games. In this paper, we will only briefly describe this generalization.

We assume that the reader knows the canonical minimax method. And in nondeterministic
games, we have the following alternate actions:

• a particular realization of a certain random event;

• a move of one player;

• another realization of the random event;

• and a move of the other player.

The number of possible outcomes of the random event is to be finite (otherwise, we need different
models). As a result, the game tree contains additional levels between those corresponding to
the players’ moves. These new levels correspond to the moments when the random event is
realized. It is such a tree that the generalization of the minimax method.

Assume that we can construct a static estimator of a position. By temporally eliminating
indeterminacy, we preliminary estimators of the game tree positions. For this purpose, we assume
first that a particular outcome of the random event has been already realized and calculate the
dynamic estimator of the position in the same way as in the conventional minimax method.
Then, we calculate the dynamic estimator for the next outcome of the random event, and so on
for all possible outcomes.

The final dynamic estimator of the position is based on the deterministic estimators of
all possible outcomes of the random event. The values of the deterministic (usually, static)
estimators are averaged in a special way resulting in the dynamic estimator. From the physical
standpoint, such averaging gives us the coordinate of the gravity center of a one-dimensional
system of masses whose values are determined by a specially chosen function (risk function).
Coordinates of the masses are equal to the values of the corresponding deterministic estimator,
which is determined by only deterministic factors of the game, like in the conventional minimax.
Let ai be values of deterministic estimators and f be a risk function. Then, according to [24, 25],
the dynamic estimator is calculated by the formula∑

k
i=1ai · f(ai)∑

k
i=1f(ai)

.

Let us note, that purpose of the paper [24] was to generalize the minimax method. The
important thing to note, however, is that the program based on this generalization only, with
the simplest risk function for static estimation of a backgammon position, showed good results
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and won most part of the programs that the authors of [24] could find that time in Internet.
This program has been gradually improving since then. Note also, that the ways of improving
the program were very different from those discussed in “classical” works on programming of
backgammon [21, 22, 23]. In the latter works, one or another way of calculation of static
estimators of a position is optimized. Some ways to improve programs, which were used by the
authors after the simplest dynamic estimator had been already introduced, are described in this
paper. Note that they concern not only improvements of the static estimator of a position.

The question is to what extent the weights of the opponent’s casts that are favorable for us
are to be reduced? Even if we simply take the risk function y = 1− 0.4x and use this function
independent of any other circumstances with the simplest static position estimator, we will get
rather good results. The short description of practical results can be found in [24]. Note also
that in that work, different decreasing risk functions were considered.

But to get a stronger program, it is required to change strategies y = 1 − 0.4x during the
game. One way to improve the dynamic estimator of a position (described in [24]) is as follows.
We qualitatively estimate the position (whether we are about to win or to loose). Then:

• if we are about to win or loose a little, we should be pessimists and adopt a risk function
similar to above-mentioned function y = 1− 0.4x;

• if we loose more, the risk function should be close to constant one;

• and if the loss is great, the risk function should be increasing; in this case we need to be
super-optimists and hope against hope (what else can we do?).

Of course, there are many other, intermediate, variants of risk functions. And a possible
approach to dynamic selecting these intermediate variants was described in detail in [25]. Thus,
the authors of this paper believe that, in the given case, the methods of modifications of plots of
risk functions simplify conventional methods of neural network programming and learning. This
follows, for example, from the fact that one of the authors created a good program for playing
backgammon using less than 3 self-learning coefficients, whereas programs described in [22, 23]
(see also above-mentioned web sites) use several hundreds such parameters for neural networks.

4. The decision-making using some different greedy heuristics simultaneously.
Dynamic risk functions in discrete optimization problems
As we said before, we shall to use not only the heuristics, which forms BBM (for TSP, or for
some other DOP), but also the other one. Namely, it is heuristics for selecting element, which
separate the considered problem into right and left sub-problems. However, we can often replace
a heuristics separating algorithm for some other. Moreover, solving a DOP using BBM, it is often
desirable to choose one of some separating algorithms, depend upon the solved sub-problem. The
various separating algorithms can be selected depend upon dimension of the solved problem,
its bound, and also many other descriptions, which are based on the solved DOP. In classical
examples of using BBM for TSP ([1] etc.), some good separating algorithms were used (it means,
that they give the reasonable results comparing other ones).

However, long before [1], for the BBM-branching various other heuristics were used, see, e.g.,
[26]. Let us mention, for example, the following heuristics for the reduced TSP-matrix:

• the total number of zeroes;

• the sum of minimums for all the rows and columns;

• the sum of some minimum values of considered row and columns multiplied by special
“damnation constants”.

All these values are computed by the TSP-matrix after reducing and selecting separating element
(i.e., separating edge for branching). Probably, the authors mentioned here less than 10% of the
heuristics used before.
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Thus, how can we use the fact, that in various situations (i.e., in various sub-problems of
the same considered DOP) different heuristics relatively better are used? (This question can be
putted for both exact and unfinished algorithms.) We need to make a decision for selecting the
separating element for branching. We have information of various experts, i.e., of various special
heuristics, so called predictors (or estimators). The predictors often give discrepant information,
and we have to average it in a special way. Unlike all the algorithms published before ([27] etc.),
the authors, like programming nondeterministic games, use dynamic risk functions for this thing.

Since various heuristics give values of various units, we have to normalize them for computing
the final result. Using the special set of normalizing coefficients (it is adjusted, for example, for
genetic algorithms, we shall consider them below) is, probably, a possible method, but it is not
the main one for this paper. The authors used only one algorithm in various DOP; that was a
special modification of “voting method”, where each of heuristics gives the considered variants
of selecting (for TSP, those are zeroes of the reduced matrix, corresponding some edges, which
are the candidates for branching). After that, we use special dynamic risk functions.

Thus, selecting edge for branching is constructed for BBM by using dynamic risk functions; see
previous sections for details. It is important to note, that the dynamic selecting of the particular
risk function is similar to selecting it in programming nondeterministic games, considered in
[24, 25] and in previous section. Since we consider here DOP (not programming nondeterministic
games), we have to add here a new heuristics, i.e., one for selecting “current position estimation”,
i.e., evaluation of the situation, which is obtained by the solving some DOP using BBM.

Thus, let us have some various heuristics for selecting the element for the next step of
BBM (or, generally speaking, for selecting the strategy of solution some DOP). Let each of
possible strategies have some various expert evaluations of availability (i.e., let us have some
independent expert sub-algorithms, i.e., predictors). Then the concluding strategy could be
chosen by maximum of average values. However, let us consider the following example (this
example is connected with backgammon programming, because it uses 36 predictors). Let
expert evaluations of availability have values in the segment [0, 1].

(i) Let for the 1st strategy, the 1st expert has the evaluations of availability being equal to 1,
and other 35 experts have the evaluation 0.055.

(ii) And for the 2nd strategy, 2 experts have the evaluation 0.95, and other 34 experts have the
evaluation 0.

Very likely, each user (expert-human) on the basis of these values chooses the 2nd strategy.
However, averaging-out by the simplest algorithm (i.e., simply the simple average of expert
evaluations) gives 0.081 for the 1st case and 0.053 for the 2nd one; i.e., do we have to choose
the 1st strategy?

Let us make computations like to [25], i.e., having the same algorithms of DRF-constructing.
For the 1st strategy, we obtain the following risk function:

−0.685 · x2 + 1.300 · x + 0.386 ,

and for the 2nd strategy:
−0.694 · x2 + 1.374 · x + 0.321 .

The final values of averaging-out of expert evaluations using these risk functions are 0.111 for
the 1st strategy and 0.147 for the 2nd strategy. Therefore, using such algorithms of DRF for
special averaging-out of expert evaluations gives “natural” answers.

Remark that twice repeated using of averaging-out (i.e., averaging-out using preliminary
values of the first step of DRF-using) chooses the 1st strategy again. However, in the limit we
have “natural” answers again. Let us describe these results by the following Table 1; the names
of columns are equal to the number of step of averaging-out using DRF (i.e., the number of using
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algorithm constructing DRF). Then the column 0 is the simple average of expert evaluations),
and the column ∞ is the limit value.

Table 1. The consistent application of DRF

0 1 2 3 4 5 . . . ∞
1st strategy 0.081 0.111 0.104 0.106 0.105 0.105 . . . 0.105
2nd strategy 0.053 0.147 0.094 0.118 0.106 0.112 . . . 0.110

Let us also remark, that this example is really possible in solving real problems: in the real
computations for the mentioned DOP, the situations, when the difference between values of
maximum and minimum expert values is more than 0.5 (i.e., more than 50% of the segment of
expert values) are very often; for example, for accidental TSP having dimension 75 and some of
predictors mentioned before, they contain, by statistics of the authors, about 10%.

5. Conclusion. Some results and some open problems
We can some simplistically formulate the main thing of this paper by the following way: using
dynamic risk functions and connected heuristics in various discrete optimization problems. Such
combination of heuristics considered in this paper, represents a special approach to construction
of anytime algorithms for the discrete optimization problems. This approach can be considered
as an alternative to application of methods of linear programming, and to methods of multi-agent
optimization, and also to neural networks.

A reference to the repository of one of the projects executed in accordance with the approach
given in this paper is the following: https://github.com/va-dudnikov/nfa.

Thus, the main thing of this paper is using DRF in various DOP. However, in each of the
papers published before, the kind of these functions was chosen on the base of the self-learning
only, for example, like [25]. Now, there is submitted a paper about the kind of these functions
in arbitrary case; certainly, all the needed conditions for these functions should be true. Some
of these conditions were already formulated also in [25]; and among the conditions, which were
not formulated there, let us mention, for example, the necessity of convergence of values after
some DRF-using, for all possible values of the set of values, which are averaged by DRF.

Let us consider some problems for the solution in the future. In Section 2, we said about
possible canceling process of SRP-constructing. We considered there this thing in view of
description of auxiliary algorithms to receive by a high probability a new quasi-optimum solution
as the result of this canceling with the following exact solving of received problem. However,
such canceling the process of SRP-constructing is also used for quite other object. Exactly,
we can formulate some heuristics for this process successfully solves the given DOP in case of
distributed computer architecture. Then the process of SRP-constructing is canceled not owing
to the fact, that on base of some heuristics, we think that the considered SRP does not give a
new quasi-optimum solution. Vice versa, we cancel it to solve the last right problem of SRP by
the separate process. Solving of the last problem of the SRP could be made by various methods
(depending, for example, on its dimension): by complete enumeration, BBM, or by some other
methods, which are considered for the given DOP.

Let us mention another difficult problem for the following solution. For different sub-classes of
problems, we try to use different genomes (using different genetic algorithms for the self-learning
is also possible); they are analogues of classes of positions in nondeterministic games. But this is
a simple problem, rather, a problem, which main complication belongs not to the programmer,
but to the experts (who understand the whole specificity of the considered DOP). There would
be much more important a possibility of automatic generating conditions for belonging some
DOP to a class of problems, which should be considered separately from other classes (let us

Науки о данных B.F. Melnikov et al.

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018) 2890



also remark, that in the case of programming intelligent games, this problem is connected with a 
problem of automatic generating a new parameter for the function of static estimating position). 
After such automatic generating we use the usual self-learning by some genetic methods, and 
then we make a testing, whether we really have constructed a new class of sub-problems for 
considered DOP. Let us remark, that the possible algorithms of such testing are evident (they 
are similar to usual algorithms of clustering), and the first part of this problem, i.e., automatic 
generating conditions of a class of problems, is much more important.

Let us remark also the following fact. Using heuristics of this paper in various DOP, the 
authors have none example, when the optimal solution needs more than 5% of the time required 
for the common solution of the considered problem. This fact marginally explains all the 
heuristics considered in this paper, even the optimum solution is unknown, e.g., if it cannot 
be obtained in the reasonable time.
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