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Abstract 

The problem of complete separation between classes may produce serious difficulties with the successful implementation of logistic regression 
due to the presence of floor and ceiling effects. To address this problem, the present study proposes two modifications of ordinary log-
likelihood. To reveal the benefits of these modifications, we provided a theoretical and experimental basis for comparison wi th the mostly 
reported way of penalizing of log-likelihood – the regularization method. From these comparisons, we concluded that the proposed 
modifications produced less biased estimates and reached higher accuracy on prediction compared to the regularized log-likelihood. 
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1. Introduction 

Despite a number of advantages such as lower bias and the higher level of simplicity and interpretability over other linear 

classifiers [1-4], the successful implementation of logistic regression (LR) seems to crucially depend on the accurate 

identification of complete separation between classes [1-3]. Although the problem of separation primarily arises in small datasets 

with several unbalanced, highly predictive features and results in a log-likelihood’s (LL) failure to converge [5-7], it may also 

occur with small or medium-sized datasets when at least one LR estimate is infinite even if the likelihood converges. Moreover, 

the problem of separation may arise if the underlying model parameters are low in an absolute value. Consequently, creating a 

proper measure to handle perfect separability is of high importance. 

A comprehensive review of the literature on this problem suggested a good deal of solutions [1,2,5-11], but the most reported 

of them is the regularization method [1,2,12,13]. This method implies penalizing of LL to make the estimates finite. 

Unfortunately, adopting regularization may lead to not asymptotically normal and highly biased estimates even if the regularized 

LL tends to produce lower prediction errors. Thus, the present research is an attempt to fill this gap by proposing the 

modifications of LL that make less biased estimates and ensure higher accuracy on prediction. 

2. Problem statement 

Let  
1
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 denote independent and identically distributed observations with binary responses  0,1iy  . The matrix 

m nX R  can be viewed either as  1, ,
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nX x x , with vectors of predictors n

ix R , or as 1, , mX x x    , with vectors of 

features j mx R . Let  1, ,
T

ny y y  be the response vector. Then, for any vector of regression coefficients n R  LR models 

the class conditional probabilities    , 1| ,i i ip x P y x    by 
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Having defined the main parameters, let us now move on to pose the LR problem. 

Problem 1. Let g  be the link (logit) function that defines the relationship between the class conditional expectation of the 

response variable and the underlying linear model   | T

i i ig E y x x . Taking into account that    | ,i i iE y x p x   for LR, 
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Under the model  ,ip x  , the negative log-likelihood (LL) expressed as 

         ln ln , 1 ln 1 ,i i i i

i

L y p x y p x        (2) 

or, what is the same, 

    ln ln 1 expT T

i i i

i

L y x x       (3) 

needs to be minimized to solve the following problem 

 argmin ln
n
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. (4) 
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As a result of complete separation or no separation between the classes, the logit function (1) may go to   for 0 successes 

(floor effect) or   for 0 failures (ceiling effect) [1,7], respectively. But, this means that (4) fails to converge. The traditional 

approach to deal with floor and ceiling effects is to penalize LL (4) for very large estimates and, thus, to shrink these estimates 

toward 0. In particular, a widely-used way [1,2] to do this adds an extra term to (2)  

    * argmin ln
n

L P


   


 
R

, (5) 

where   is a regularization parameter,  P   is a function that penalizes coefficients   as they get further away from zero. 

Considering some shortcomings of (5) that were pointed out in Section 1, let us now propose two new modifications of LL to 

address the problem of floor and ceiling effects primarily stepped from complete separation of classes. 

3. Modifications of log-likelihood 

Before explaining these modifications, it is necessary to present the extension of Problem 1. Thus, Problem 2 involves an 

extra parameter  0,1c  to describe floor and ceiling effects.  

Problem 2. Let the logit function   ,ig p x   be extended to   , ,ig p x c , where  0,1c , as follows 
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Then, minimizing the negative LL  ln ,L c  solves the two-parameter problem 

 
 

 
0,1

, arg min ln ,
n
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c L c
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. (7) 

The present study considers two modifications of LL  ln ,L c  with regard to (6) and the way of passing c  into (2). 

3.1.  1-form modification 

This form of modification implies introducing the parameter c  in the LL loss function (2) as  
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Based on the definition (8), let us state the following lemma. 

Lemma 1. For each 
n

ix R , n R , and  0,1c , the LL loss function  ln ,L c  based on 1-form modification (9) for 

floor and ceiling effects are the same and equal to 

      ln , ln 1 exp ln 1T T

i i i

i

L c y x x c        . (9) 

Corollary 2. For 0c  , (9) results in (3). 

3.2.  2-form modification 

This modification, in contrast, employs the same definition for presenting floor and ceiling effects 

           1 1ln , ln , , 1 ln 1 , ,i i i i

i

L c y g p x c y g p x c        . (10) 

The lemma that is posed below seems to clearly underline the difference between the proposed modifications of LL. 

Lemma 3. For each 
n

ix R , n R , and  0,1c , the LL loss function  ln ,L c  based on 2-form modification (10) for 

floor and ceiling effects are equal to 



Information Technology and Nanotechnology – 2017 

Data Science        1851 

 
         

            

ln exp 1 ln 1 ln 1 exp floor;

ln ,
ln 1 exp 1 ln 1 exp ln 1 exp ceiling.

T T

i i i i

i

T T T

i i i i i

i

y c x y c x if

L c
y c x y c x x if

 


  

       


 
      





 (11) 

Corollary 4. For 0c  , (11) gives (3). 

The similarity between (3), (9), and (11) invites the following comparison: while 2-form modification (11) implies both the 

inclusion of the estimates   and the parameter c  to penalize LL, 1-form modification (9) includes only one extra term – 

 ln 1 c  compared to the known definition (3). It should be noted, though, that the problem (7) produces the estimates   based 

on (6), i.e. the parameter c  modifies the coefficients   and, thus, is implicitly present in both modifications regardless of the 

form or the type of effect to be introduced (floor or ceiling). Comparing the proposed modifications with the regularized LL (5), 

it can be suggested that the latter approach to penalizing LL rather similar to 1-form modification, but 1-form modified LL 

produces less biased estimates. The detailed analysis of the estimates’ bias is beyond the scope of this paper, but still seems 

promising direction for further research. In the present study, to confirm the theoretical outcomes, we conducted a series of 

computational experiments the results of which are given in the following section. 

4. Results 

To highlight the benefits of the proposed solution to the complete separation problem, the present study is intended to 

compare the results proposed in this paper with previously reported in the literature. For this purpose, we considered ridge 

regression with the penalty   2

j

j

P    in (5) to introduce the regularized LL. Before we go any further, let us first describe a 

dataset chosen to support these comparisons. 

4.1. Dataset description 

The dataset heart was taken from UCI Machine Learning Repository (Statlog (Heart)) [14] mX  ( 270, 13m n  ) and 

divided into the training subset 1lX  and the validation subset 2lX  using 4-fold cross validation. To increase a chance of 

identifying the separation problem, the experiments suggested varying the limited number of observations, i.e.  25, 50m  . 

Taking into account the fact that we had to deal with small subsets, we carried out a series of additional experiments to provide 

statistically significant estimates. Thus, each presented result is the average of 50N   computed values.  

4.2. Computational experiments 

The computational experiments were designed to: 1) model 

validation curves; 2) find the optimal values of regulation parameters 

/c  ; 3) estimate the accuracy of classification with regard to a form 

of LL and  25, 50m  . Fig. 1, 2, and 3 depict the corresponding 

validation curves subject to 25m . As can be seen, the validation 

curves based on regularized LL (see Fig. 1) are similar to those 

presented in Fig. 2 a) and Fig. 3 a) based on 1-form modified LL. This 

fully complies with the theoretical results.  

The validation curves that demonstrate the estimates of 2-form 

modified LL (see Fig. 2 b) and Fig. 3 b)) seem different to others, but 

are more attractive: it is easier to point out the optimal value of c .  

The values of classification accuracy based on different 

modifications of LL subject to  25, 50m   are presented in Table 1 

and 2, respectively. If we look at these values, we can see that all the penalized LL (5), (9), (11) produced better results – an 

increase in accuracy is up to 5% – than the ordinary LL (3). In addition, the proposed modified LL permitted to reach higher 

accuracy on the validation subset in comparison with the regularized LL. As the values of accuracy are not high enough for the 

chosen dataset, the modifications that describe a floor effect allowed us to yield more marked improvement on the results than 

the modifications of LL for a ceiling effect. Moreover, 2-form modified LL performed better than 1-form modified LL that 

confirmed the findings of this research. Analyzing the presented results subject to 50m , we observe that the proposed 

modifications brought us little or no advantage over the regularized LL, but we can still state that the desired outcome is 

achieved: the modified LLs are designed to measure floor and ceiling effects intrinsic to smaller datasets. 

 
Fig.1. The validation curves based on regularized LL subject 

to 25m  . 
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Fig.2. The validation curves based on modified LL subject to 25m   (floor effect): a) 1-form; b) 2-form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. The validation curves based on modified LL subject to 25m   (ceiling effect): a) 1-form; b) 2-form. 

Table 1. The accuracy of classification based on different modifications of LL subject to 25m   
 

A form of LL /c    1lX  2lX  

LL 0/0 100.000 70.5000 

Regularized LL 0/10 91.3158 72.5000 

1-form modified LL (floor) 0.036/0 99.9474 74.5000 

2-form modified LL (floor) 0.2/0 100.000 75.5000 

1-form modified LL (ceiling) 0.031/0 99.8421 70.8333 

2-form modified LL (ceiling) 0.031/0 100.000 71.3333 

Table 2. The accuracy of classification based on different modifications of LL subject to 50m   
 

A form of LL /c    1lX  2lX  

LL 0/0 97.1579 72.5000 

Regularized LL 0/5 89.7368 76.0000 

1-form modified LL (floor) 0.016/0 97.0526 73.5833 

2-form modified LL (floor) 0.016/0 96.3421 76.2500 

1-form modified LL (ceiling) 0.006/0 97.3684 73.0000 

2-form modified LL (ceiling) 0.001/0 97.8947 74.0000 

5. Conclusion 

The present study was aimed at proposing a proper measure based on LL to directly address the issue of floor and ceiling 

effects in classification problems. For this reason, we offered two promising modifications: 1-form modification and 2-form 

modification. In support of these modifications, we provided a theoretical and experimental basis for comparison with the known 

ways of penalizing of LL reported in the literature, in particular, the regularization method. From these comparisons we may 

draw the following conclusions: the proposed modifications produced less biased estimates and reached higher accuracy on 

prediction compared to the regularized LL. Therefore, the purpose, stated in this paper, is accomplished. 

 
a) 

 
b) 

 
a) 

 
b) 
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