Модернизация оптической части квантового стандарта частоты на атомах рубидия-87 для улучшения метрологических характеристик

А.С. Гревцева¹, В.В. Давыдов^{1,2}, В.Ю. Рудь^{2,3}

¹Санкт-Петербургский политехнический университет Петра Великого, Политехническая 29, Санкт-Петербург, Россия, 195251

²Всероссийский научно-исследовательский институт фитопатологии, Институтский пр. 5, Большие Вяземы, Россия, 143050

³ФТИ А.Ф. Иоффе, Политехническая 26, Санкт-Петербург, Россия, 194021

Аннотация

Рассмотрены основные недостатки действующей конструкции квантового стандарта частоты на атомах рубидия-87, которая используется в спутниковых навигационных системах. Предложено одно из решений по модернизации оптической части конструкции рубидиевого стандарта частоты. Выполнен расчет выходных параметров для модернизированной конструкций стандарта с учетом введенных дополнительных элементов, включая оптические. Предложена методика проведения экспериментальных исследований основных характеристик квантового стандарта на атомах рубидия-87.

Ключевые слова

Квантовый стандарт частоты, оптическая накачка, оптический переход, стабильность, фазовая автоподстройка частоты резонанса

1. Введение

В современной навигации одной из важных задач является определение точного времени и частоты. Для решения данной задачи глобальные навигационные спутниковые группировки, такие как российский ГЛОНАСС и глобальные системы позиционирования США (GPS) активно используют квантовые стандарты частоты (КСЧ), среди них рубидиевые КСЧ [1, 2].

В настоящее время с развитием радиоэлектронной аппаратуры требования к точности спутниковых систем навигации постоянно повышаются, что делает задачу по их модернизации особенно актуальной [2]. Модернизация стандартов частоты не является исключением, данный процесс включает в себя как изменение габаритов и веса конструкции, так и улучшение их метрологических характеристик. Необходимо отметить, что для КСЧ модернизация может быть проведена не для всей его конструкции, а только для отдельных блоков [1, 2]. В данной работе рассматривается одно из возможных решений по модернизации конструкции квантового стандарта частоты на атомах рубидия-87.

2. Модернизация конструкции рубидиевого стандарта частоты

В отечественных и зарубежных моделях КСЧ на атомах рубидия-87 основные принципы работы остаются неизменными. В основе принципа лежит автоматическая подстройка частоты КГ к значению частоты квантового перехода в оптически ориентированных атомах Rb-87. Для реализации подстройки частоты КГ оптическая ячейка атомного дискриминатора (АД) облучается СВЧ сигналом, частота которого соответствует частоте квантового перехода возбужденных атомов рубидия-87. В применяемых в настоящее время методах формирования СВЧ есть существенный недостаток. В спектре выходного сигнала с частотой 5,313 МГц присутствуют боковые амплитудные составляющие. Наличие боковых составляющих создают

дополнительные оптические сигналы, которые могут привести к возникновению погрешности в установлении значения частоты выходного сигнала рубидиевого стандарта.

В новой конструкции стандарта СВЧ сигнал с частотой 6834,7 МГц предлагается синтезировать с помощью системы двух кольцевой фазовой автоподстройки частоты (ФАПЧ). Схема синтеза представлена на рис. 1.

Рисунок 1: Структурная схема двух кольцевой системы ФАПЧ: ГУН – генератор управляемый напряжением; ДЧ – делитель частоты; ФД – фазовый детектор; ФНЧ – фильтр нижних частот; АЧ – аналоговая часть; Ф – фильтр

Основными элементами системы ФАПЧ являются фазовый детектор (ФД), на один из входов которого подается сигнал от генератора, управляемого напряжением (ГУН). Другой вход ФД подключен к источнику опорного сигнала с частотой f_{on} . Фазовый детектор сравнивает сигналы на обоих входах и генерирует сигнал ошибки, который после фильтрации и усиления (при необходимости) подстраивает частоту ГУН. В составе системы ФАПЧ используется также фильтр нижних частот (ФНЧ), включаемый между выходом ФД и входом ГУН и определяющий во многом ее частотные свойства. Сигнал СВЧ синтезируется в два этапа. В первом кольце ФАПЧ происходит подстройка ГУН с выходной частотой 100 МГц, для этого в микросхеме ФД согласно формуле (1) подбираются коэффициенты деления опорной и входной частоты.

$$f_{\rm Bbix} = \frac{f_{\rm off} * K}{K_{\rm off}},\tag{1}$$

где $f_{on} = 5 M\Gamma q$ –частота опорного сигнала, К-коэффициент деления входной частоты, К_{оп} –коэффициент деления опорной частоты, $f_{вых}$ – выходная частота ГУН.

Во втором кольце ФАПЧ аналогично подстраивается ГУН с выходной частотой 6,8 ГГц. Для создания точного значения частоты квантового перехода на финальном этапе дробная составляющая подмешивается к выходному сигналу системы ФАПЧ. При этом необходимый сигнал 6, 8347 ГГц сразу поступает на вход АД, СВЧ диод из новой схемы исключается.

3. Заключение

Разработанная конструкция блока КСЧ имеет главное преимущество: более чистый спектр выходного оптического сигнала, поступающего на фотодетектор. Это позволяет снизить погрешность в установлении действительного значения частоты выходного сигнала рубидиевого КСЧ, что улучшает стабильность работы прибора.

4. Литература

- Grevtseva, A.S. Development of neural network for automatic calibration of ultrasonic thickness gauge // A.S. Grevtseva, V.V. Davydov, V.Yu. Rud / Journal of Physics: Conference Series. – 2020. – Vol. 1697(1). – P. 012079.
- [2] Valov, A. On the need to use the median signal filtering method to improve the metrological characteristics of the rubidium frequency standard during processing and transmitting large data arrays // V. Valov, K. Lukashev / CEUR Workshop Proceedings. – 2020. – Vol. 2667. – P. 102-105.