Моделирование распространения круговых пучков Эйри в параболическом волокне

Е.О. Монин¹, С.Г. Волотовский²

¹Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086

²Институт систем обработки изображений РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, Молодогвардейская 151, Самара, Россия, 443001

Аннотация. Исследование поведения различных типов самофокусирующихся лазерных пучков в параболических средах расширяет спектр оптических сигналов, используемых для телекоммуникации. В частности, дробное преобразование Фурье используется для описания волокон с параболическим показателем преломления. В данной работе рассматриваются круговые пучки Эйри, которые имеют радиальную зависимость. Было выполнено моделирование прохождения данных пучков через оптическое волокно с параболическим показателя преломления на основе использования дробного преобразования Фурье.

1. Введение

Последнее время внимание исследователей обращено на различные пучки, обладающие свойством автофокусировки [1-9], среди которых круговые пучки Эйри [10-14], пучки Пирси [15-17], гипергеометрические [18-21] и другие пучки [22, 23]. Свойство резкой автофокусировки, присущее таким пучкам, востребовано при оптическом манипулировании [24-26], полезно для многофотонной полимеризации [27], используется при нелинейных эффектах [28] и для поляризационных преобразований [29, 30].

Функции Эйри являются бесконечно протяжёнными и не обладают конечной энергией, поэтому для их физической реализации требуется усечение. В [11] были рассмотрены пучки Эйри с конечной энергией, представляющие собой произведение классической моды Эйри и экспоненциальной функции. Хотя умножение на экспоненциальную [11] или гауссову [12] функцию позволяет достаточно просто формировать такие пучки с помощью пространственного модулятора света, в обоих случаях формируемые пучки фактически перестают быть бездифракционными, хотя приблизительно сохраняют свой вид до некоторого расстояния.

В работе [13] был рассмотрен иной способ усечения бесконечной моды Эйри – с помощью прямоугольной апертуры, усекающей функцию в положительной части аргумента при спадании её практически до нуля, а в отрицательной части – до п-го нуля. В [13] проводилось сравнение степени расходимости трёх типов усечённых пучков Эйри: экспоненциальных, гауссовых и ограниченных диафрагмой – и было численно показано, что в последнем случае осциллирующая структура пучка и чётко выделенный максимум интенсивности сохраняется гораздо дольше, чем в двух первых.

В данной работе выполнено численное исследование поведения круговых пучков Эйри, ограниченных круговой апертурой (аналогично работе [13]), в оптическом волокне с параболическим изменением показателя преломления на основе использования дробного преобразования Фурье [31-33].

2. Круговые пучки Эйри

В данной работе рассматриваются круговые пучки Эйри. Они представляют собой радиально симметричные пучки, интенсивность которых по радиусу описывается функцией Эйри [10]:

$$Ai(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \exp\left[i\left(\frac{t^3}{3} - xt\right)\right] dt$$
(1)

В работе [14] рассмотрены вихревые пучки Эйри, радиальная составляющая которых выражается через усечённые по п-му корню или экстремуму ограниченные функции Эйри [13]. При распространении такие пучки сохраняют выраженную кольцевую структуру, аналогично модам Лагерра-Гаусса, хотя соотношение радиусов колец меняется. Заметим, что рассмотренный в работе [14] тип вихревых функций Эйри существенно отличается от круговых функций Эйри, предложенных в работах [1-3], для которых характерна резкая автофокусировка. Таким образом, выбор точки вращения при формировании круговых пучков из одномерных распределений существенно меняет свойства пучка.

После «раскручивания» функции (1) способом [1-3], были разделены мнимая и реальная часть комплексного распределения полученной функции. Мнимая часть представляет собой периодическую незатухающую функцию, причем в интересующей нас зоне существенно меньше действительной составляющей. Так что в дальнейшем мы будем рассматривать только ее. Так же будем рассматривать только те значения, которые попали в некий радиус, так как моделирование будет проходить в круглом волноводе:

$$R_{Ai}(r,\rho,\omega) = \operatorname{Re}\left\{Ai\left[\omega(r-\rho)\right] \cdot \operatorname{circ}\left(\frac{r}{R_{\max}}\right)\right\}$$
(2)

Параметры *р* и *ω* отвечают за радиус ограничивающей апертуры и масштабное увеличение соответственно.

На рисунке 1 показано распределение, полученное при помощи полученной формулы (2). При моделировании были использованы следующие значения: $\rho = 1$, $\omega = 6$.

Рисунок 1. Круговой пучок Эйри.

Также в данной работе рассматриваются вихревые круговые пучки Эйри, обладающие орбитальным угловым моментом. Распространение таких пучков в свободном пространстве исследовалось в работах [4, 34, 35]. Также азимутально-модулированные круговые пучки Эйри, которые можно рассматривать как суперпозицию вихревых круговых пучков Эйри, предложены и исследованы в работе [36].

Вихревые круговые пучки описываются следующим выражением:

$$\Psi_{Ai,l}(\mathbf{x},\mathbf{y},\boldsymbol{\rho},\boldsymbol{\omega}) = R_{Ai}(\sqrt{x^2 + y^2},\boldsymbol{\rho},\boldsymbol{\omega}) \cdot (x + iy)^l$$
(3)

Рисунок 2 демонстрирует пучки с разным вихревым порядком *l*.

Рисунок 2. Вихревые круговые пучки Эйри: l = 1 (a), l = 4 (б) и l = 7 (в).

3. Дробное преобразование Фурье

Дробное преобразование Фурье [31, 32] используется для описания прохождения лазерного излучения через оптическое волокно с параболическим показателем преломления (рисунок 3). Для ограниченного волокна могут быть найдены лазерные моды с распределениями, ограниченными в объектной и спектральной областях.

Рисунок 3. Профиль волновода.

Для расчетов распространения вихревых круговых пучков Эйри в параболическом волокне использовалось дробное преобразование Фурье в следующем виде:

$$F(u,v,z) = -\frac{ik}{2\pi f \sin \tau} \exp\left\{\frac{ik\cos\tau(u^2+v^2)}{2f\sin\tau}\right\} \times$$

$$\times \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \exp\left\{\frac{ik\cos\tau(x^2+y^2)}{2f\sin\tau} - \frac{ik(xu+yv)}{f\sin\tau}\right\} dxdy$$

$$\Gamma \det \tau = \frac{z}{f} \cdot \frac{\pi}{2}.$$
(4)

Заметим, что выражение (4) имеет особенности (деление на ноль) в случае, когда значение z = 2nf, n - целое. Также вблизи этих точек наблюдается высокая погрешность. Чтобы решить данную проблему, рассмотрим весь путь распространения пучка и поделим этот путь на 4 части, как представлено на рисунке 4.

Рисунок 4. Полный период с отрезками.

Наименьшее влияние погрешности при вычислении будет на отрезке $\left[\frac{1}{2}f, \frac{3}{2}f\right]$. Тогда чтобы промоделировать продольное распространение с помощью формулы (4) на отрезке [f, 2f] следует рассчитать поперечное распределение в плоскости $z = \frac{1}{2}f$ и выполнить для него дробное преобразование Фурье на расстояние наименьшей погрешности. Тем самым мы избежим деления на ноль в точке z = 2f. Аналогично рассчитываются остальные отрезки. Однако для расчета первого отрезка [0, f] нам нужно найти распределение в плоскости

 $z = -\frac{1}{2}f$. Получается, что нужно знать, что было до нашего входного пучка. Тогда вспомним, что дробное преобразование Фурье – функция периодическая вдоль оси *z* с периодом равным

4 f. Из этого следует, что для расчета первого отрезка можно рассматривать пучок в плоскости

$$z = -\frac{1}{2}f + 4f = \frac{7}{4}f.$$

4. Моделирование

Результаты моделирования с использованием выражения (4) и алгоритма, описанного в предыдущем разделе, приведены на рисунках 5-9.

На рисунках 5-8 показаны продольные картины на периоде [0,4f], f=1000 мм, входной размер пучка 5 мм × 5 мм. Как видно, до плоскости фокуса (z=f) имеет место самофокусировка пучка (максимальная концентрация интенсивности на оптической оси) на расстоянии z=660 мм. Аналогичный эффект для одномерных дробных пучков Эйри отмечался в работе [9]. Нужно заметить, что расстояние самофокусировки не зависит от порядка оптического вихря.

Рисунок 5. Продольное распространение пучка для l = 0.

Рисунок 6. Продольное распространение пучка для l = 1.

Рисунок 7. Продольное распространение пучка для l = 4.

О. Монин, С.Г. Волотовский

Рисунок 8. Продольное распространение пучка для l = 7.

Поперечное распределение пучков в плоскости самофокусировки при z = 660 мм показано на Рисунке 9.

Рисунок 9. Поперечный вид пучков.

5. Вывод

В работе выполнено численное исследование поведения вихревых круговых пучков Эйри, ограниченных круговой апертурой, в оптическом волокне с параболическим изменением показателя преломления. Для моделирования использовалось дробное преобразование Фурье, реализованное на основе алгоритма, позволяющего корректно рассчитывать поле в особых точках (при делении на ноль) и вблизи них. Для решения данной проблемы алгоритм предусматривает смещение на половину фокусного расстояния. Результаты моделирования показали, что расстояние самофокусировки круговых пучков Эйри не зависит от порядка оптического вихря.

6. Благодарности

Работа выполнена при поддержке Федерального агентства научных организаций (соглашение № 007-ГЗ/ЧЗ363/26).

7. Литература

- [1] Efremidis, N.K. Abruptly autofocusing waves / N.K. Efremidis, D.N. Christodoulides // Opt. Lett. 2010. Vol. 35(23). P. 4045-4047.
- [2] Papazoglou, D.G. Observation of abruptly autofocusing waves / D.G. Papazoglou, N.K. Efremidis, D.N. Christodoulides, S. Tzortzakis // Opt. Lett. 2011. Vol. 36. P. 1842-1844.
- [3] Chremmos, I. Pre-engineered abruptly autofocusing beams / I. Chremmos, N.K. Efremidis, D.N. Christodoulides // Opt. Lett. 2011. Vol. 36(10). P. 1890-1892.

- [4] Davis, J.A. Abruptly autofocusing vortex beams / J.A. Davis, D.M. Cottrell, D. Sand // Opt. Express. 2012. Vol. 20(12). P. 13302-13310.
- [5] Man, Z. Tight focusing of quasi-cylindrically polarized beams / Z. Man, C. Min, S. Zhu, X.-C. Yuan // J. Opt. Soc. Am. A. – 2014. – Vol. 31. – P. 373-378.
- [6] Chremmos, I.D. Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics / I.D. Chremmos, Z. Chen, D.N. Christodoulides, N.K. Efremidis // Phys. Rev. A. – 2012. – Vol. 85(2). – P. 023828.
- [7] Efremidis, N.K. Accelerating and abruptly autofocusing matter waves / N.K. Efremidis, V. Paltoglou, W. von Klitzing // Phys. Rev. A. 2013. Vol. 87(4). P. 043637.
- [8] Kovalev, A.A. Auto-focusing accelerating hyper-geometric laser beams / A.A. Kovalev, V.V. Kotlyar, A.P. Porfirev // J. Opt. 2016. Vol. 18. P. 025610-025617.
- Khonina, S.N. Fractional Airy beams / S.N. Khonina, A.V. Ustinov // Journal of the Optical Society of America A. – 2017. – Vol. 34(11). – P. 1991-1999.
- [10] Vallee, O. Airy functions and applications in physics / O. Vallee, M. Soares. London: Imperial College Press, 2004. – 194 p.
- [11] Siviloglou, G.A. Accelerating finite energy Airy beams / G.A. Siviloglou, D.N. Christodoulides // Opt. Letters. – 2007. – Vol. 32(8). – P. 979-981.
- [12] Banders, M.A. Airy-Gauss beams and their transformation by paraxial optical systems / M.A. Banders, J.C. Gutierrez-Vega // Opt. Express. 2007. Vol. 15(25). P. 16719-16728.
- [13] Хонина, С.Н. Ограниченные 1D пучки Эйри: лазерный веер / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. 2008. –Т. 32, № 2. С. 168-174.
- [14] Khonina, S.N. Specular and vortical Airy beams / S.N. Khonina // Optics Communications. 2011. – Vol. 284. – P. 4263-4271.
- [15] Nye, J.F. Evolution from a Fraunhofer to a Pearcey diffraction pattern / J.F. Nye // J. Opt. A: Pure Appl. Opt. – 2003. – Vol. 5. – P. 495-502.
- [16] Ring, J. Auto-focusing and self-healing of Pearcey beams / J. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, M. Dennis // Opt. Express. 2012. Vol. 20. P. 18955-18966.
- [17] Deng, D. Virtual source of a Pearcey beam / D. Deng, C. Chen, X. Zhao, B. Chen, X. Peng, Y. Zheng // Opt. Lett. 2014. Vol. 39. P. 2703-2706.
- [18] Котляр, В.В. Оптические чистые вихри и гипергеометрические моды / В.В. Котляр, С.Н. Хонина, А.А. Алмазов, В.А. Сойфер // Компьютерная оптика. 2005. Т. 27. С. 21-28.
- [19] Котляр, В.В. Гипергеометрические моды / В.В. Котляр, Р.В. Скиданов, С.Н. Хонина, С.А. Балалаев // Компьютерная оптика. 2006. Т. 30. С. 16-22.
- [20] Karimi, E. Hypergeometric-Gaussian modes / E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, E. Santamato // Opt. Lett. 2007. Vol. 32. P. 3053.
- [21] Kotlyar, V.V. Generating hypergeometric laser beams with a diffractive optical element / V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, S.N. Khonina, J. Turunen // Applied Optics. – 2008. – Vol. 47(32). – P. 6124- 6133.
- [22] Zhang, P. Nonparaxial Mathieu and Weber Accelerating Beams / P. Zhang, Y. Hu, T.C. Li, D. Cannan, X.B. Yin, R. Morandotti, Z.G. Chen, X. Zhang // Phys. Rev. Lett. 2012. Vol. 109. P. 193901.
- [23] Aleahmad, P. Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams / P. Aleahmad, M.A. Miri, M.S. Mills, I. Kaminer, M. Segev, D.N. Christodoulides // Phys. Rev. Lett. – 2012. – Vol. 109. – P. 203902.
- [24] Хонина, С.Н. Формирование лазерных пучков Эйри с помощью бинарно-кодированных дифракционных оптических элементов для манипулирования микрочастицами / С.Н. Хонина, Р.В. Скиданов, О.Ю. Моисеев // Компьютерная оптика. – 2009. – Т. 33, № 2. – С. 138-146.
- [25] Zhang, P. Trapping and guiding microparticles with morphing autofocusing Airy beams / P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen // Opt. Lett. 2011. Vol. 36(15). P. 2883-2885.
- [26] Jiang, Y. Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle / Y. Jiang, K. Huang, X. Lu // Opt. Express. – 2013. – Vol. 21(20). – P. 24413-24421.

- [27] Manousidaki, M. Abruptly autofocusing beams enable advanced multiscale photopolymerization / M. Manousidaki, D.G. Papazoglou, M. Farsari, S. Tzortzakis // Optica. – 2016. – Vol. 3(5). – P. 525-530.
- [28] Panagiotopoulos, P. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets / P. Panagiotopoulos, D.G. Papazoglou, A. Couairon, S. Tzortzakis // Nat. Commun. – 2013. – Vol. 4. – P. 2622.
- [29] Liu, S. Observation of abrupt polarization transitions associated with spin-orbit interaction of vector autofocusing Airy beams / S. Liu, P. Li, M. Wang, P. Zhang, J. Zhao // in Frontiers in Optics. – 2013. – Vol. FW1A(5) – P. 1-7.
- [30] Liu, S. Abrupt polarization transition of vector autofocusing Airy beams / S. Liu, M. Wang, P. Li, P. Zhang, J. Zhao // Opt. Lett. 2013. Vol. 38(14). P. 2416-2418.
- [31] Alieva, T. Fractional transforms in optical information processing / T. Alieva, M.J. Bastiaans, M.L. Calvo // J. Appl. Signal Processing. – 2005. – Vol. 10. – P. 1-22.
- [32] Kirilenko, M.S. Calculation of eigenfunctions of a bounded fractional Fourier transform / M.S. Kirilenko, R.O. Zubtsov, S.N. Khonina // Computer Optics. 2015. Vol. 39(3). P. 332-338.
- [33] Mossoulina, O.A. Simulation of vortex laser beams propagation in parabolic index media based on fractional Fourier transform / O.A. Mossoulina, M.S. Kirilenko, S.N. Khonina // Journal of Physics: Conference Series. – 2016. – Vol. 741. – P. 012142-012148.
- [34] Dai, H.T. Propagation dynamics of an optical vortex imposed on an Airy beam / H.T. Dai, Y.J. Liu, D. Luo, X.W. Sun // Opt. Lett. 2010. Vol. 35. P. 4075-4077.
- [35] Chen, B. Propagation of sharply autofocused ring Airy Gaussian vortex beams / B. Chen, C. Chen, X. Peng, Y. Peng, M. Zhou, D. Deng // Opt. Express. 2015. Vol. 23. P. 19288-19298.
- [36] Porfirev, A.P. Generation of the azimuthally modulated circular superlinear Airy beams / A.P. Porfirev, S.N. Khonina // Journal of the Optical Society of America B. – 2017. – Vol. 34(12). – P. 2544-2549.

Modelling of distribution of circular beams of airy in parabolic fiber

E.O. Monin¹, S.G. Volotovsky²

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086 ²Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardejskaya street 151, Samara, Russia, 443001

Abstract. The study of the behavior of various types of self-focusing laser beams in parabolic environments extends the spectrum of optical signals used for telecommunications. In particular, a fractional Fourier transform is used to describe fibers with a parabolic refractive index. In this paper we consider circular Airy beams, which have a radial dependence. Modeling of the passage of these beams through an optical fiber with a parabolic change in the refractive index was performed on the basis of the use of a fractional Fourier transform.

Keywords: Circular beams of Airy, Autofocusing, Parabolic fiber, Fractional Fourier transform.