Моделирование поляризационных, фазовых и амплитудных преобразований методом трассировки лучей

А.А. Селезнева

Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия seleznevalisha@gmail.com

Аннотация Данная работа моделированию процессов распространения света в рамках геометрической оптики. Учтены поляризации и набега фазы луча. Рассмотрены процессы взаимодействия луча с границей раздела сред. Учтены Разработана эффекты отражения Френеля. эвристического метода интерференции когерентных поляризованных полей, расширяющая нотацию Джонса. Планируется моделирование процесса интерференции пучка поляризованных лучей, прошедших через линзу.

Ключевые слова — трассировка лучей, геометрическая оптика, законы отражения и преломления, поляризация

1. Введение

Главная задача компьютерной графики заключается в наиболее реалистичном моделировании изображений [1]. В данной работе будет рассмотрен один из наиболее перспективных методов – метод трассировки лучей.

В каком-то смысле упрощенно можно назвать трассировку лучей симуляцией работы человеческого зрения, ведь каждое видимое человеку изображение объекта — есть бессчетное количество отраженных от реально существующих объектов лучей света [2].

Точно так же, все изображения, построенные методом трассировки — есть симуляция отраженных от объектов лучей. Алгоритм отслеживает путь луча от точки, из которой он исходит, и моделирует его взаимодействие с объектами, учитывая законы отражения, преломления и прочие.

Задачи моделирования процессов распространения светового излучения в пространстве и различных средах актуальны в настоящее время в связи с высокой реалистичностью, которую помогает достигать метод трассировки лучей [1, 2].

Метод трассировки лучей отличается тем, что не учитывает волнового характера распространения света, а определяет лучи как некоторые геометрические векторы [3, 4]. Такие явления как интерференция и дифракция с помощью геометрической оптики учесть невозможно. Для лучшего моделирования процессов распространения света в пространстве в данной работе рассмотрен метод трассировки лучей с учетом поляризационных состояний луча.

2. АЛГОРИТМ ТРАССИРОВКИ ЛУЧЕЙ

Для моделирования трассировки лучей были использованы плоскость и сфера. Плоскость задается радиус-вектором и вектором нормали, сфера задается

С.А. Дегтярев

Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия;

Институт систем обработки изображений - филиал ФНИЦ «Кристаллография и фотоника» РАН, Самара, Россия sealek@gmail.com

радиус-вектором и радиусом. Преломление происходит из воздуха в стекло.

При помощи векторных вычислений определяются точки пересечения плоскости и шара некоторым лучом. Для моделирования отражения и преломления лучей при взаимодействии с поверхностями производится пересчет единичного вектора согласно законам отражения и преломления в векторной форме:

$$\overline{e}' = \overline{e} - 2(\overline{e}, \overline{n}) \overline{n} , \qquad (1)$$

$$n_2 \overline{e}' = n_1 \overline{e}' - (n_1 \overline{e}, \overline{n}) \overline{n} (1 - \sqrt{\frac{n_2^2 - n_1^2}{(n_1 \overline{e}, \overline{n})^2} + 1}),$$
 (2)

где \overline{e}' — искомый единичный вектор направления преломленного луча, \overline{e} — единичный вектор направления падающего луча, \overline{n} — нормаль поверхности, на которую луч падает, n_2 — показатель преломления среды, содержащей преломленый луч, n_l — показатель преломления среды, содержащей падающий и отраженный лучи (рис. 1).

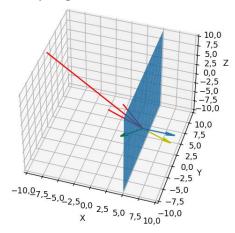


Рис. 1. Моделирование преломления (желтый луч) и отражения (зеленый луч) при взаимодействии падающего (красный) луча и заданной плоскости

3. ПРИМЕНЕНИЕ ВЕКТОРА ДЖОНСА ДЛЯ ОПИСАНИЯ ПОЛЯРИЗАЦИИ

Вектор Джонса — это комплексный вектор, используемый для определения поляризации электрического поля монохроматического света. Если рассмотреть все допустимые значения комплексных компонент вектора Джонса E_1 и E_2 , то им будут соответствовать все возможные состояния поляризации.

В дальнейшем найдем компоненты вектора Джонса для преломленного и отраженного лучей в новом базисе s' и p'. Воспользуемся формулами Френеля.

Пересчитаем компоненты для отраженного луча:

$$E_{p'}^{reflect} = \frac{n_2 \cos \alpha - n_1 \cos \beta}{n_2 \cos \alpha + n_1 \cos \beta} E_p , \qquad (3)$$

$$E_{s'}^{reflect} = \frac{n_1 \cos \alpha - n_2 \cos \beta}{n_1 \cos \alpha + n_2 \cos \beta} E_s.$$
 (4)

Пересчитаем компоненты для преломленного луча:

$$E_{p'}^{refract} = \frac{2n_1 \cos \alpha}{n_2 \cos \alpha + n_1 \cos \beta} E_p , \qquad (5)$$

$$E_{s'}^{refract} = \frac{2n_1 \cos \alpha}{n_1 \cos \alpha + n_2 \cos \beta} E_s.$$
 (6)

Если смотреть на поведение электрического вектора монохроматической волны со стороны положительного направления оси Z, то можно обнаружить, что его конец описывает эллипс.

4. МОДЕЛИРОВАНИЕ ТРАССИРОВКИ ЛУЧЕЙ ЧЕРЕЗ ПРЕЛОМЛЯЮЩУЮ ЛИНЗУ

Будем задавать линзу при помощи пересечения двух сфер. Пучок падающих лучей является плоскопараллельным. На рис. 2 представлена модель такой линзы. На рис. 3 представлено распределение лучей на регистрирующей поверхности, находящейся в предполагаемом фокусе. Лучи преломляются дважды: при входе в линзу и при выходе из линзы.

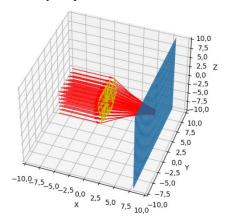


Рис. 2. Моделирование трассировки лучей через преломляющую линзу

До пересечения с плоскостью каждый из них проходит свой оптический путь, который рассчитывается по формуле L=ln где l — путь луча в среде, n — показатель преломления этой среды.

Чтобы поместить регистрирующую поверхность в фокусе, необходимо определить его. Из-за формы линзы

получить точный фокус, не получится, поэтому за него будем считать наиболее приближенную точку – такую, в которой дисперсия оптического пути будет наименьшей.

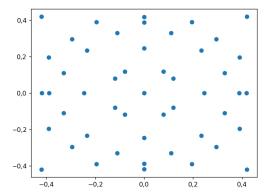


Рис. 3. Распределение лучей на регистрирующей поверхности после преломления в линзе

5. Заключение

данной работе был реализован алгоритм трассировки лучей с использованием законов отражения и преломления в векторной форме. Промоделировано поведение луча при взаимодействии с поверхностями. Промоделирована трассировка лучей преломляющую линзу. Показана необходимость учета формул Френеля при расчете высокоапертурных линз в силу больших углов падения. Разработана идея эвристического метода интерференции когерентных поляризованных полей. Для этого рассчитывается ход лучей через линзу с учетом поляризации и диаграмма рассеяния точки. Для каждого комплексного значения вектора Джонса отдельного луча ставится в соответствие двумерная комплексная Гауссова распределения плотности вектора Джонса. При этом интегральное значение данной функции равно вектору Джонса луча. Гауссовы функции лучей частично накладываются и их можно просуммировать. Таким образом получается функция рассеяния точки для поляризованных когерентных полей.

В продолжение работ планируется рассчитать ход лучей через линзу с высокой числовой апертурой. При больших углах падения эффекты Френеля играют существенную роль, которой нельзя пренебречь. Предполагается рассчитать интерференционные картины лучей в фокальной плоскости, при этом учесть набег фазы и поляризационные эффекты.

Литература

- [1] Брундасов, С.М. Компьютерная графика: учебник для вузов / С.М. Брундасов. Брянск: БГТУ, 2004. 241 с.
- [2] Трассировка лучей // ІТ портал kanobu. [Электронный ресурс]. Режим доступа: https://kanobu.ru/articles/revolyutsiyavgrafike-chto-takoe-trassirovka-luchej-372475/ (13.07.2022).
- [3] Chalmers, A. Practical parallel rendering / A. Chalmers, T. Davis, E. Reinhard. – 1-st ed. – Massachusetts: A K Peters, 2002. – 392 p.
- [4] Ли, Дж. Трёхмерная графика и анимация / Дж. Ли, Б. Уэр. 2-е изд. М.: Вильямс, 2002. 640 с.