Моделирование формирования бездифракционных параболических пучков

Т.А. Пластинина¹

¹Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086

Аннотация. В данной работе выполнено численное исследование обобщения параболических бездифракционных пучков двух порядков, сформированных из аналитически заданного распределения кольцевого пространственного спектра. Моделирование формирования и распространения бездифракционных параболических пучков выполнено с использованием преобразования Фурье и преобразование Френеля. Исследовано влияние радиуса и ширины кольцевого пространственного спектра на бездифракционные свойства пучков, а также характер симметрии поперечных картин пучка в зависимости от порядков пучка.

1. Введение

Бездифракционные пучки [1-3] привлекают повышенное внимание исследователей в связи с их способностью сопротивляться влиянию дифракции при распространении. Это свойство бездифракционных пучков эффективно применяется в различных областях, таких как оптический захват и манипулирование микро- и нанообъектами [4-7], метрологию и микроскопию [8-10], кодирование и передача информации [11, 12].

Самыми известными среди бездифракционных пучков являются моды Бесселя [1-3]. Несколько менее известны пучки Матье [13], параболические пучки [14] и их обобщения [15-18]. Известны также пучки обладающие свойствами, близкими к бездифракционным пучкам, например, пучки Эйри [19], Олвера [20] и их обобщения [21-25].

Общим свойством классических бездифракционных пучков, соответствующих решениям уравнения Гельмгольца в разделимых координатных системах, является сосредоточенность пространственного спектра на узком кольце. Это свойство часто используется для генерации различных бездифракционных пучков [1, 26, 27]. Однако в этом случае при падении излучения на узкую кольцевую щель теряется значительная часть энергии. Более энергетически эффективным является формирование бездифракционных пучков с помощью рефракционных или дифракционных оптических элементов [28-32]. Кроме того, можно использовать простой способ энергетически эффективного формирования различных бездифракционных лазерных пучков с помощью частичного диафрагмирования кольцевого пространственного спектра [33, 34], созданного обычным аксиконом.

Очевидно, при экспериментальной реализации бездифракционных пучков на основе кольцевого распределения можно сформировать бездифракционные пучки лишь приближенно, так как ширина кольца не является бесконечно узкой с бесконечной энергией, как теоретически предполагается. Для исследования сохранения бездифракционных свойств таких пучков, можно выполнить численное моделирование.

В данной работе численно исследуется двух-порядковое обобщение параболических бездифракционных пучков [17], сформированных из аналитически заданного распределения кольцевого пространственного спектра. Моделирование формирования и распространения бездифракционных параболических пучков выполнено с использованием преобразования Фурье и преобразование Френеля. Исследовано влияние радиуса и ширины кольцевого пространственного спектра на бездифракционные свойства пучков.

2. Теоретические основы

Бездифракционные пучки описываются в общем случае следующим образом [13-18]:

$$U(x, y, z) = \exp(-ik_z z) \int_{-\pi}^{\pi} A(\varphi) \exp\left[-ik_t \left(x\cos\varphi + y\sin\varphi\right)\right] d\varphi,$$
(1)

где $A(\phi)$ - угловой спектр.

Классические параболические бездифракционные пучки полностью описываются угловым спектром следующего вида [14]:

$$A(\varphi;a) = \frac{1}{2\left(\pi|\sin\varphi|\right)^{1/2}} \exp\left(ia\ln\left|tg\frac{\varphi}{2}\right|\right).$$
(2)

Функция (2) имеет только один непрерывный параметр а, который был назван порядком пучка.

В работе [17] было рассмотрено обобщение параболических пучков, имеющих два порядка – ранее предложенный непрерывный параметр а и целый индекс m, обеспечивающий новые свойства пучков. Обобщенный пространственный спектр описывается следующей формулой:

$$A_m(\varphi; a) = \frac{1}{2} \left(\pi \left| \sin(m\varphi) \right| \right)^{-1/2} \exp \left[ia \ln \left| tg\left(\frac{m\varphi}{2}\right) \right| \right], \tag{3}$$

где т – целое.

Рассмотрим свойства функции (3): она имеет нули знаменателя; интеграл от данной функции является сходящимся; особые точки сгущения фазы совпадают с нулями знаменателя.

Для проведения анализа распространения данных пучков, используется преобразование Френеля через преобразование Фурье.

Преобразование Фурье функции *f* вещественной переменной является интегральным и описывается в общем виде следующим образом:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ix\omega} dx.$$
(4)

Преобразование Фурье функций, заданных на пространстве \mathbb{R}_n :

$$\hat{f}(\omega) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-ix\omega} dx.$$
 (5)

Здесь ω и *x* – векторы пространства, ω –их скалярное произведение.

2.1. Результаты моделирования преобразования Фурье и преобразования Френеля

Преобразование Френеля играет важную роль при описании свободного распространения когерентных оптических полей и при анализе дифракции в условиях, менее ограниченных, чем те, которые требуются для преобразования Фурье. Преобразование Френеля можно определить следующим образом:

$$F(u, v, z) = \iint f(x, y) e^{\frac{ik}{2z}} ((x - u)^2 + (y - v)) dx dy.$$
(6)

Для упрощения рассмотрим следующий вид уравнения Френеля с добавленной линзой через преобразование Фурье:

$$G(x,y) = f(x,y)e^{-ik\frac{x^2+y^2}{2f}}e^{ik\frac{x^2+y^2}{2z}},$$
(7)

где f-фокусное расстояние; z- расстояние от оптического элемента.

Вынесем общий множитель и получим формулу:

$$G(x,y) = f(x,y)e^{ik\frac{x^2+y^2}{2}}\left(\frac{1}{z} - \frac{1}{f}\right).$$
(8)

Таким образом, если взять преобразование Френеля с добавленной линзой вблизи фокусной плоскости будет заметно значительное графическое сходство с графиком преобразования Фурье.

Для визуализации полученного результата в таблице 1 и таблице 2 приведены результат графиков преобразования Френеля и графиков преобразования Фурье от входной функции.

Проанализировав полученные графики, можно сделать вывод, что при изменении расстояния до оптического элемента более, чем на половину фокусного расстояния, свойства бездифракционности будут теряться.

3. Заключение

В данной работе с использованием преобразования Фурье и преобразование Френеля выполнено численное моделирование формирования и распространения бездифракционных параболических пучков двух порядков. Для моделирования были написаны программы на языке Python и на языке Octave для формирования аналитически заданного распределения кольцевого пространственного спектра и последующего применения к нему преобразования Фурье и Френеля.

Рассчитанные поперечные картины пучков обладают симметрией порядка m для нечетных значений индекса, в то время как для чётных значений индекса m наблюдается симметрия 2m.

Моделирование распространения бездифракционных параболических пучков показало сокращение расстояния сохранения бездифракционных свойств пучков при уменьшении ширины кольца, а также при увеличении его радиуса. Численные исследования позволили обнаружить нарушение бездифракционности при чётном значении индекса т.

Таблица 2. Результат работы программы.

4. Благодарности

Данная работа была выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-07-00505 А).

5. Литература

- [1] Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory // Opt. Soc. Am. 1987. Vol. 4. P. 651-654.
- [2] Durnin, J. Diffraction-free Beams / J. Durnin, J. Miceli, J.H. Eberly // Phys. Rev. Lett. 1987. Vol. 58. – P. 1499-1501.
- [3] McGloin, D. Bessel beams: diffraction in a new light / D. McGloin, K. Dholakia // Contemporary Physics. 2005. Vol. 46(1). P. 15-28.

- [4] Garces-Chavez, V. Simultaneous micromanipulation in multiple planes using a selfreconstructing light beam / V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia // Nature. - 2002. - Vol. 419. - P. 145-147.
- [5] Cizmar, T. Generation of multiple Bessel beams for a biophotonics workstation / T. Cizmar, V. Kollarov, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, K. Dholakia // Optics Express. 2008. Vol. 16(18). P. 14024-14035.
- [6] Хонина, С.Н. Формирование лазерных пучков Эйри с помощью бинарно-кодированных дифракционных оптических элементов для манипулирования микрочастицами / С.Н. Хонина, Р.В. Скиданов, О.Ю. Моисеев // Компьютерная оптика. 2009. Т. 33, № 2. С. 138-146.
- [7] McLaren, M. Self-healing of quantum entanglement after an obstruction / M. McLaren, T. Mhlanga, M.J. Padgett, F.S. Roux, A. Forbes // Nat. Commun. 2014. Vol. 5. P. 3248.
- [8] Wang, K. Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement / K. Wang, L. Zeng, Ch. Yin // Opt. Commun. – 2003. – Vol. 216. – P. 99-103.
- [9] Leitgeb, R.A. Extended focus depth for Fourier domain optical coherence microscopy / R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser // Opt. Lett. 2006. Vol. 31(16). P. 2450-2452.
- [10] Fahrbach, F.O. Microscopy with self-reconstructing beams / F.O. Fahrbach, P. Simon, A. Rohrbach // Nature Photonics. 2010. Vol. 4. P. 780-785.
- [11] Khonina, S.N. Creating order with the help of randomness: generating transversely random, longitudinally invariant vector optical fields / S.N. Khonina, I. Golub // Optics Letters. – 2015. – Vol. 40(17). – P. 4070-4073.
- [12] Saad, F. A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere / F. Saad, E.M. El Halba, A. Belafhal // Opt Quant Electron letters. - 2017. - Vol. 49. - P. 94-106.
- [13] Gutierrez-Vega, J.C. Alternative formulation for invariant optical fields: Mathieu beams / J.C. Gutierrez-Vega, M.D. Iturbe-Castillo, S. Chavez-Cerda // Opt. Lett. – 2000. – Vol. 25(20). – P. 1493-1495.
- Bandres, M.A. Parabolic nondiffracting optical wave fields / M.A. Banres, J.C. Gutierrez-Vega, S. Chavez-Cerda // Opt. Lett. - 2004. - Vol. 29(1). - P. 44-46.
- [15] Gutierrez-Vega, J.C. Focusing evolution of generalized propagation invariant optical fields / J.C. Gutierrez-Vega, R. Rodriguez-Masegosa, S. Chavez-Cerda // J. Opt. – 2003. – Vol. 5. – P. 276-282.
- [16] Gutierrez-Vega, J.C. Helmholtz-Gauss waves / J.C. Gutierrez-Vega, M.A. Bandres // J. Opt. Soc. Am. – 2005. – Vol. 22(2). – P. 289-298.
- [17] Khonina, S.N. Generalized parabolic nondiffracting beams of two orders / S.N. Khonina, A.V. Ustinov, S. Chávez-Cerda // Journal of the Optical Society of America. 2018. Vol. 35(9). P. 1511-1517.
- [18] Khonina, S.N. Fractional two-parameter parabolic diffraction-free beams / S.N. Khonina, A.V. Ustinov, A.P. Porfirev // Optics Communications. 2019. Vol. 450. P. 103-111.
- [19] Berry, M.V. Nonspreading wave packets / M.V. Berry, N.L. Balazs // Am. J. Phys. 1979. Vol. 47(3) – P. 264-267.
- [20] Belafhal, A. Theoretical introduction and generation method of a novel nondiffracting waves: olver beams / A. Belafhal, L. Ez-Zariy, S. Hennani, H. Nebd // Opt. Photon. J. – 2015. – Vol. 5. – P. 234-246.
- [21] Хонина, С.Н., Зеркальные лазерные пучки Эйри / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. 2010. Т. 34, № 2. С. 203-213.
- [22] Zhang, P. Trapping and guiding microparticles with morphing autofocusing Airy beams / P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z.G. Chen // Opt. Lett. 2011. Vol. 36(15). P. 2883-2885.
- [23] Khonina, S.N. Specular and vortical Airy beams // Optics Communications. 2011. Vol. 284. – P. 4263-4271.

- [24] Hennani, S. Propagation Properties of Olver-Gaussian Beams Passing through a Paraxial ABCD Optical System / S. Hennani, L. Ez-zariy, A. Belafhal. // Opt. Photon. – 2015. – Vol. 5. – P. 273-294.
- [25] Khonina, S.N. Fractional Airy beams / S.N Khonina, A.V. Ustinov // Journal of the Optical Society of America A. – 2017. – Vol. 34(11). – P. 1991-1999.
- [26] Ziolkowski, R.W. Aperture realizations of exact solutions to homogeneous-wave equations / R.W. Ziolkowski, I.M. Besieris, A.M. Shaarawi // J. Opt. Soc. Am. A. – 1993. – Vol. 10(1). – P. 75-87.
- [27] Lopez-Mariscal, C. Observation of parabolic nondiffracting optical fields / C. Lopez-Mariscal, M.A. Bandres, J.C. Gutierrez-Vega, S. Chavez-Cerda // Opt. Express. – 2005. – Vol. 13. – P. 2364-2369.
- [28] McLeod, J.H. The axicon: a new type of optical element // J. Opt. Soc. Am. 1954. Vol. 44. P. 592-597.
- [29] Dyson, J. Circular and spiral diffraction gratings // Proc. Royal Soc. A. 1958. Vol. 248. P. 93-106.
- [30] Vasara, A. Realization of general nondiffracting beams with computer generated holograms / A. Vasara, J. Turunen, A.T. Friberg // J. Opt. Soc. Am. A. 1989. Vol. 6. P. 1748-1754.
- [31] Khonina, S.N. Bessel-mode formers / S.N. Khonina, V.V. Kotlyar // Proceedings of SPIE. 1995. Vol. 2363. P. 184-190.
- [32] Khonina, S.N. Generating a couple of rotating nondiffarcting beams using a binary-phase DOE / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, J. Lautanen, M. Honkanen, J. Turunen // Optik. – 1999. – Vol. 1109(3). – P. 137-144.
- [33] Anguiano-Morales, M. Different field distributions obtained with an axicon and an amplitude mask / M. Anguiano-Morales, A. Martinez, M.D. Iturbe-Castillo, S. Chavez-Cerda // Optics Communications. – 2008. – Vol. 281. – P. 401-407.
- [34] Хонина, С.Н. Простой способ эффективного формирования различных бездифракционных лазерных пучков // Компьютерная оптика. 2009. Т. 33, № 1. С. 70-78.

Modeling the formation of non-diffraction parabolic beams

T.A. Plastinina¹

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086

Abstract. All articles, we performed a numerical study of the generalization of parabolic nondiffraction beams of two orders formed from an analytically given distribution of the ring spatial spectrum. The formation and propagation of non-diffraction parabolic beams are simulated using the Fourier transform and the Fresnel transform. The influence of the radius and width of the circular spatial spectrum on the diffraction-free properties of the beams, as well as the nature of the symmetry of the transverse beam patterns depending on the orders of the beam, is studied.