Моделирование фокусировки лазерного излучения диэлектрическим наноцилиндром с металлическим сердечником

А.А. Савельева^{1,2}, Е.С. Козлова^{1,2}

¹Институт систем обработки изображений РАН - филиал ФНИЦ «Кристаллография и фотоника» РАН, Молодогвардейская 151, Самара, Россия, 443001 ²Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086

Аннотация. С помощью FDTD-метода показано, что кварцевый наноцилиндра диаметром 360 нм с золотым сердечником 40 нм позволяет фокусировать TM-поляризованное лазерное излучение в наноджет с шириной по полуспаду интенсивности 298 нм и максимальной интенсивностью 3,755 отн. ед.

1. Введение

В настоящее время широко используются оптические приборы, основанные на принципе острой фокусировки света. Применение сверхмалых фокусных пятен имеет широкий спектр использования в разных областях: улучшение качества изображения[1], запись на оптические диски [2], нанолитография [3], оптическое манипулирование [4] и др.

В связи с этим, большое количество научных работ посвящено вопросам фокусировки и формированию наноджетов[5-8]. Наноджет представляет собой сверх узкое световое пятно, полученное в результате фокусировки света, и распространяющееся на несколько длин волн при сохранении полной длины волны на половину максимума. Для формирования наноджетов широко используются прозрачные сферы, цилиндры, диски и призмы [9-11]. В статье [10] демонстрируется резонансное возбуждение мод, при фокусиовке монохроматического света на цилиндре квадратного сечения. В статье [12] рассматривается один из способов получения наноджета с применением сфер различного диаметра. Авторы используют два вида сфер: с металлической сердцевиной и без. Лучший результат удалось достигнуть, используя двуслойную сферу.

Кроме того, в настоящее время широкое применениеполучил такой оптический феномен как поверхностный плазмон-поляритон (ППП). Эти волны возникают в результате взаимодействия света с металлом и распространяются вдоль раздела сред между диэлектриком и металлом[13]. ППП могут стать мощным инструментом, способствующим усилению фокусировки электромагнитного излучения. Благодаря резонансным эффектам возможна фокусировка такого излучения вблизи элемента. В статье [14] было выявлено наличие центрального плазмон-поляритона при прохождении света через серебряные нано-элементы на подложке из кварцевого стекла. В статье [15] для уменьшения размеров пятна в область фокуса, формируемого амплитудной зонной пластинкой Френеля, помещалась металлическая наноантенна.

В данной работе рассматривается один из способов получения сверх малого фокусного пятна, основанный на формировании фотонных наноструй. С помощью FDTD-метода, реализованного в пакете FullWAVE, моделируется фокусировка ТМ-поляризованного излучения с длинной волны 633 нм на диэлектрическом наноцилиндре из кварцевого стекла с металлическим сердечником.

2. Схема численного моделирования

Рассмотрим процесс фокусировки ТМ-поляризованного электромагнитного излучения с длиной волны 633 нм, которое падает на круглый диэлектрический цилиндр с металлической сердцевиной, размещенный в воздухе ($n_1 = 1$). Общий диаметр микроцилиндра D_d и диаметр металлической сердцевины D_m обозначены на рис. 1, представляющим схему численного моделирования. В качестве материала для диэлектрической оболочки рассматривается кварцевое стекло.

Рисунок 1. Схема оптического эксперимента для цилиндра с сердечником.

Диэлектрическая проницаемость кварцевого стекла описывается моделью Селлмейера [15]:

$$\varepsilon_{2}(\lambda) = \varepsilon_{\infty} + \sum_{m} \frac{\Delta \varepsilon_{m} \lambda^{2}}{\lambda^{2} - \lambda_{m}^{2} + i\lambda \eta_{m}}, \qquad (1)$$

где λ – длина волны, $\varepsilon_{\infty}(x,z)$ – диэлектрическая проницаемость на высоких частотах, $\Delta \varepsilon_m(x,z)$ – величина резонанса, $\lambda_m(x,z)$ – резонансная длина волны, $\eta_m(x,z)$ – коэффициент демпфирования. Параметры модели Селлмейера для кварцевого стекла можно найти в работе [15].

В качестве металлов для сердцевины рассматривается золото, диэлектрическая проницаемость которого описывается моделью Друде-Лоренца [16]:

$$\varepsilon_m(\omega) = \varepsilon_{\infty}(z) + \frac{\omega_p^2}{-2i\omega v - \omega^2} + \sum_m \frac{A_m \omega_m^2}{-\omega^2 - 2i\omega \delta_m + \omega_m^2},\tag{2}$$

где ω – частота, ω_p – плазменная частота, v – частота столкновений, A_m - амплитуда резонанса, δ_m - коэффициент демпфирования, ω_m – резонансная частота. Параметры модели Друде-Лоренца для золота представлены в [16].

3. Моделирование фокусировки наноцилиндром с золотым сердечником

С помощью пакета FullWAVE, реализующего FDTD-метод с учетом частотной дисперсии, проведем моделирование фокусировки излучения двуслойным наноцилиндром, дизайн которого представлен на рис. 1. Здесь и далее использовались следующие параметры

моделирования: шаги дискретизации по пространству - 5 нм, шаг дискретизации по времени - 0,35 нм (используется псевдо-время ct, где c - скорость света в вакууме, t - время). В ходе расчетов зафиксируем размер цилиндра равным 360 нм, а диаметр золотой сердцевины будем менять. В ходе анализа результатов будем оценивать такие параметры фокусного пятна, как фокусное расстояние f, максимальную интенсивность I_{max} , ширину FWHMx и глубину DOFz по полуспаду интенсивности. Результаты моделирования представлены в Таблице 1.

D_m , нм	I _{max} , отн.ед.	<i>FWHMx</i> , нм	<i>f</i> , нм	DOF, нм
220	0,8236	418	371,5	2216
120	1,086	424	211,5	1709
100	1,269	417	166,5	1899
80	1,415	424	146,5	1836
60	1,535	424	156,5	1899
40	3,755	298	65,0	1646

Таблица 1. Зависимость параметров фокусного пятна от диаметра золтой сердцевины.

Из таблицы видно, что лучший итог дает микроцилиндр с диаметром сердечника 40 нм. Результаты моделирования для него представлены на рис. 2-3.

Рисунок 2. Распределение интенсивности вдоль продольной (а) и поперечной координат (б).

Рисунок 3. Распределение интенсивности для двуслойного микроцилиндра с диаметром металлической сердцевины 40 нм.

Для сравнения проведем моделирование фокусировки обычным диэлектрическим цилиндром из кварцевого стекла. Результаты моделирования показали, что однородный цилиндр дает на расстоянии 191,5 нм фокусное пятно с максимальной интенсивностью 1,586 отн. ед. и шириной и глубиной по полуспаду интенсивности 449 нм и 1988 нм соответственно.

4. Заключение

В данной работе, с помощью FDTD-метода, реализованного в пакете FullWAVE, моделируется фокусировка ТМ-поляризованного излучения с длинной волны 633 нм диэлектрическим

690

наноцилиндром из кварцевого стекла с золотым сердечником. В ходе моделирования общий диаметр цилиндра был зафиксирован, в то время как диаметр металлической сердцевины варьировался для получения более узкого пятна. Лучшие результаты показал многослойный цилиндр с диаметром металлической сердцевины 40 нм, который формирует пятно с максимальной интенсивностью 3,755 отн. ед. и шириной и глубиной по полуспаду интенсивности 298 нм и 1646 нм соответственно.

5. Литература

- [1] Chitnis, A. Time-lapse imaging beyond the diffraction limit / A. Chitnis, D.D. Nogare // Methods. 2018. Vol. 150. P. 32-41. DOI: 10.1016/j.ymeth.2018.07.004.
- [2] Kallepalli, D.L.N. Ultra-high density optical data storage in common transparent plastics / D.L.N. Kallepalli, A.M. Alshehri, D.T. Marquez, L. Andrzejewski, J.C. Scaiano, R. Bhardwaj // Scientific Reports. – 2016. – Vol. 6(26163). DOI: 10.1038/srep26163.
- [3] Li, Y. Dual-Channel Light Intensity Modulation Method for Focusing in Projection Lithography / Y. Li, W. Yan, S. Hu, J. Feng, J. Wang // IEEE Photonics Journal. – 2016. – Vol. 8(1). DOI: 10.1109/JPHOT.2015.2508419.
- [4] Singh, B.K. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams / B.K. Singh, H. Nagar, Y. Roichman, A. Arie // Light: Science & Applications. - 2017. - Vol. 6. - P. 17050. DOI: 10.1038/Isa.2017.50.
- [5] Zuo, R. Breaking the Diffraction Limit with Radially Polarized Light Based on Dielectric Metalenses / R. Zuo, W. Liu, H. Cheng, S. Chen, J. Tian // Advanced Optical Materials. – 2018. – Vol. 6(21). – P. 1800795. DOI: 10.1002/adom.201800795.
- [6] Дегтярев, С.А. Трёхмерный расчёт фокусировки лазерного излучения коническим диэлектрическим зондом // Компьютерная оптика. 2016. Т. 40, № 4. С. 588-593. DOI: 10.18287/2412-6179-2016-40-4-588-593.
- [7] Wu, M. Creation of a longitudinally polarized photonic nanojet via an engineered microsphere / M.Wu, R. Chen, J. Ling, Z. Chen, X. Chen, R. Ji, M. Hong // Optics Letters. – 2017. – Vol. 42. – P. 1444-1447. DOI: 10.1364/OL.42.001444.
- [8] Kozlova, E. S. Modeling the resonance focusing of a picosecond laser pulse using a dielectric microcylinder / E.S. Kozlova, V.V. Kotlyar, S.A. Degtyarev // Journal of the Optical Society of America B. – 2015. – Vol. 32(11). – P. 2352-2357. DOI: 10.1364/JOSAB.32.002352.
- [9] Geints, Yu.E. Modeling spatially localized photonic nanojets from phase diffraction gratings / Yu.E. Geints, A.A. Zemlyanov // Jornal of Applied Physics. – 2016. – Vol. 119(15). – P. 153101. DOI: 10.1063/1.4946846.
- [10] Козлов, Д.А. Резонансная острая фокусировка света диэлектрическим цилиндром с квадратным сечением и кубом / Д.А. Козлов, Е.С. Козлова, В.В. Котляр // Компьютерная оптика. 2016. Т. 40, № 4. С. 431-438. DOI: 10.18287/2412-6179-2016-40-4-431-438.
- [11] Abolmaali, F. Photonic jets for highly efficient mid-IR focal plane arrays with large angle of view / F. Abolmaali, A. Brettin, A. Green, N. I. Limberopoulos, A. M. Urbas, V. N. Astratov // Optics Express. – 2017. – Vol. 25. – P. 31174-31185. DOI: 10.1364/OE.25.031174.
- [12] Grojo, D. Bessel-like photonic nanojets from core-shell sub-wavelength spheres / D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N.D. Leo, M. Laus, K. Sparnacci // Optics Letters. 2014. Vol. 39(13). P. 3989-3992. DOI: 10.1364/OL.39.003989.
- [13] Barnes, W.L. Surface plasmon subwavelength optics / W.L. Barnes, A. Dereux, T.W. Ebbesen // Nature. – 2003. – Vol. 424. – P. 824-830. DOI: 10.1038/nature01937.
- [14] Kozlova, E.S. Tight focusing of laser light using a surface plasmonpolariton in a silver nano-strip and nano-ring on silica glass / E.S. Kozlova, V.V. Kotlyar // Computer Optics. – 2016. – Vol. 40(5). – P. 629-634. DOI: 10.18287/2412-6179-2016-40-5-629-634.
- [15] Couairon, A. Filamentation and damage in fused silicainduced by tightly focused femtosecond laser pulses / A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz // Physical Review B: Condensed Matter. 2005. Vol. 71(12). P. 125435-125441. DOI: 10.1103/ PhysRevB.71.125435.

[16] Rakic, A.D. Optical properties of metallic films for vertical-cavity optoelectronic devices / A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski // Applied Optics. – 1998. – Vol. 37(22). – P. 5271-5783. DOI: 10.1016/j.ymeth.2018.07.004.

Благодарности

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 17-47-630420, 18-07-01380) и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ «Кристаллографика и фотоника» РАН.

Simulation of laser radiation focusing by a dielectric nanocylinder with a metal core

A.A Savelyeva^{1,2}, E.S. Kozlova^{1,2}

¹Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardejskaya street 151, Samara, Russia, 443001 ¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086

Abstract. Using the FDTD method, it was shown that a nanocylinder from silica glass with a diameter of 360 nm and a gold core of 40 nm focus TM-polarized laser light into a nanojet with a FWHM of 298 nm and a maximum intensity of 3.755 a.u.