# Моделирование дифракции вихревых пучков на криволинейных дифракционных решетках

А.Б. Дубман

Самарский национальный исследовательский университет им. академика С.П. Королева

Самара, Россия

anna.dubman11@gmail.com

Аннотация — В данной работе выполнен расчет дифракции вихревых пучков на криволинейных дифракционных решетках, а также проведено исследование влияния номера оптического вихря на результаты дифракции.

Ключевые слова — конический вихревой пучок, функция Бесселя, бинарная криволинейная решетка

## 1. Введение

Оптические вихревые (OB) пучки эффективно применяются в захвате и манипулировании частицами [1], лазерном структурировании вещества [2]. В некоторых приложениях, например, при уплотнении каналов оптической передачи информации, необходимо одновременно формировать несколько ОВ пучков разного порядка. Для этого используются многопорядковые дифракционные оптические элементы (ДОЭ) [3], поскольку они позволяют формировать и детектировать различные ОВ пучки.

В последнее время внимание исследоватей привлекают «идеальные» ОВ [4], радиус светового кольца которых не зависит от вихревого порядка. Отметим, что классические вихревые пучки, такие как пучки Лагерра–Гаусса [5] и пучки Бесселя [6], имеют центральное световое кольцо, размер которого зависит от вихревого порядка.

Формирование «идеальных» ОВ возможно с использованием изогнутых вилкообразных решеток [7], формирующих фактически набор вихревых пучков Бесселя под разными углами к оптической оси.

В данной работе на освнове численного моделирования исследуется дифракция вихревых пучков на изогнутых вилкообразных решетках, в том числе вне фокальной плоскости.

## 2. Теоретические основы

Функция Бесселя первого рода *m*-го порядка определяется по формуле [8]:

$$J_m(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(m+k+1)} \left(\frac{x}{2}\right)^{m+2k}.$$
 (1)

На рис. 1 представлены амплитуда и фаза функции Бесселя  $J_m(\alpha r)$  при  $\alpha = 7$  и m = 1, а также показано преобразование Фурье (ПФ) от функции Бесселя.



Рис. 1. Амплитуда (а) и фаза (б) функции Бесселя J<sub>m</sub>(αr), а также амплитуда (в) и фаза (г) ПФ функции Бесселя

Далее будем рассматривать в качестве падающего излучения одномодовый вихревой Бесселевый пучок:

$$U(r,\varphi) = C_{m,\alpha} J_m(\alpha r) e^{im\varphi}, \qquad (2)$$

где  $\alpha = 7$  и m = 1,  $C_{m,\alpha} = 1$ .

# 3. Моделирование дифракции вихревых пучков

Рассмотрим фазовый ДОЭ с функцией комплексного пропускания следующего вида [9]:

$$\tau(r,\varphi) = e^{i\alpha r + im\varphi} e^{i\beta r\cos(\varphi)}, r < R, \qquad (3)$$

где  $e^{i\alpha r+im\varphi}$  – спиральный аксикон, формирующий вихревой пучок Бесселя m-го порядка;  $e^{i\beta r\cos(\varphi)} = e^{i\beta x}$  – призматическая составляющая, соответствующая линейной несущей, отклоняющей пучок от оптической оси.

Далее для моделирования будем использовать бинарный аналог ДОЭ, определяемого выражением (3):

$$\tau(r,\varphi) = e^{i\frac{\pi}{2}\left(\operatorname{sgn}\left[\cos(\alpha r + \beta r \cos(\varphi) + m\varphi)\right] - 1\right)}, r < R.$$
(4)

В работе [9] было рассмотрено формирование набора вихревых конических пучков с использованием ДОЭ с комплексной функцией пропускания (4), дополненного линзой, при освещении плоским пучком. В данной работе исследуется дифракция на ДОЭ (4) вихревых пучков вида  $e^{im_0\varphi}$ . В этом случае при моделировании в качестве входного поля рассматривается поле вида:

$$\tau_*(r,\varphi) = \tau(r,\varphi) \cdot e^{im_0\varphi} .$$
<sup>(5)</sup>

При моделировании использовались следующие параметры: длина волны падающего излучения  $\lambda$ =532 нм, радиус элемента R = 1 мм, фокус линзы f = 800 мм.

В таблице I показан вид фазы оптического элемента  $t^*(r,j)$ , определяемого по формуле (5) с параметрами: m = 1,  $\beta = 30 \text{ мм}^{-1}$ ,  $\alpha = 5 \text{ мм}^{-1}$  при варьировании  $m_0 = -1$ , 1, 2, 3, 5, 7.

Для расчета дифракции использовалось преобразование Френеля

$$F(u,v,z) = -\frac{ik}{2\pi z} e^{ikz} \int_{-\infty}^{\infty} f(x,y) \cdot e^{\frac{ik}{2z}((x-u)^2 + (y-v)^2)} dxdy, (6)$$

где  $z \square \sqrt{(x-u)^2 + (y-v)^2}$ .

IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

Расчет преобразования Френеля (6) был реализован через быстрое преобразование Фурье (БПФ) на основе следующего соотношения:

$$F(u,v,z) = \Im\left\{f(x,y) \cdot e^{\frac{ik}{2z}(x^2+y^2)}\right\},\qquad(7)$$

где символ *Э*означает БПФ.

Таблица I. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ФАЗЫ ОПТИЧЕСКОГО ЭЛЕМЕНТА ПРИ РАЗНЫХ ЗНАЧЕНИЯХ ПАРАМЕТРА *M*<sub>0</sub>



Результаты моделирования дифракции вихревых пучков на бинарных криволинейных решетках, описываемых уравнением (4) показаны в таблице II. Параметры расчета: m = 1,  $\beta = 30$  мм<sup>-1</sup>,  $\alpha = 5$  мм<sup>-1</sup>,  $m_0 = -1$ , 1, 2, 3, 5, 7. Распределение поля показано на расстоянии z = 400 мм от оптического элемента, то есть вне фокальной плоскости.

Таблица II. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ДИФРАКЦИИ ВИХРЕВЫХ ПУЧКОВ НА КРИВОЛИНЕЙНЫХ ДИФРАКЦИОННЫХ РЕШЕТКАХ M = 1 при ВАРЬИРОВАНИИ  $M_0 = -1, 1, 2, 3, 5, 7.$ 

| Амплитуда и фаза поля<br><i>т.(r, q)</i> при <i>m</i> <sub>0</sub> = -1 | Амплитуда и фаза поля<br><i>т.(r, φ)</i> при <i>m</i> <sub>0</sub> = 1                                         |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                         | 000.000                                                                                                        |
|                                                                         |                                                                                                                |
| Амплитуда и фаза поля $\tau_{\bullet}(r, \phi)$ при $m_0 = 2$           | Амплитуда и фаза поля<br><b>τ.(</b> r, <i>φ</i> ) при m <sub>0</sub> = 3                                       |
| 0000.000                                                                | 000 • • • • • • • • • • • • • • • • • •                                                                        |
|                                                                         | and a second |

#### ПРОДОЛЖЕНИЕ ТАБЛИЦЫ II



# 4. Заключение

Исследование дифракции вихревых пучков на бинарных криволинейных дифракционных решетках показало возможность детектирования вихревого порядка вне фокальной плоскости. Из результатов видно, что корреляционные пики наблюдаются только для нечетных положительных значений  $m_0$ . Это связано с известным фактом формирования бинарными решетками только нечетных порядков дифракции [10], если ширина полос одинакова.

### ЛИТЕРАТУРА

- Paterson, L. Controlled rotation of optically trapped microscopic particles / L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, K. Dholakia // Science. - 2001. - Vol. 292. - P. 912-914.
- [2] Syubaev, S. Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiralshape pulses / S. Syubaev, A. Zhizhchenko, O. Vitrik, A. Porfirev, S. Fomchenkov, S. Khonina, S. Kudryashov, A. Kuchmizhak // Applied Surface Science. – 2019. – Vol. 470. – P. 526–534.
- [3] Khonina, S.N. Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders / S.N. Khonina, S.V. Karpeev, M.A. Butt // Sensor. – 2021. – Vol. 21. – P. 2988.
- [4] Khonina, S.N. Caustics of non-paraxial perfect optical vortices generated by toroidal vortex lenses / S.N. Khonina, S.I. Kharitonov, S.G. Volotovskiy, V.A. Soifer // Photonics. – 2021. – Vol. 8. – P. 259.
- [5] Phillips, R.L. Spot size and divergence for Laguerre Gaussian beams of any order / R.L. Phillips, L.C. Andrews // Appl. Opt. – 1983. – Vol. 22. – P. 643–644.
- [6] Paterson, C. Higher-order Bessel waves produced by axicon-type computer-generated holograms / C. Paterson, R. Smith// Opt. Commun. – 1996. - Vol. 124. – P. 121–130.
- [7] Topuzoski, S. Generation of optical vortices with curved fork-shaped holograms / S. Topuzoski // Opt. Quantum Electron. – 2016. – Vol. 48. – P. 1–6.
- [8] Alda, J. Laser and Gaussian beam propagation and transformation / J. Alda // Encyclopedia of Optical Engineering. – New York: "Marcel Dekker", 2003.
- [9] Dubman, A.B. Modeling curvilinear diffraction gratings for generating optical vortices / A.B. Dubman // IEEE Proceedings of ITNT-2022. – 2022. – P. 1–5.
- [10] Khonina, S. N. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order / S.N. Khonina, A.V. Ustinov // Applied Optics. – 2019. – Vol. 58(30). – P. 8227–8236.