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Abstract 

Elastic properties of charge stabilized colloidal crystals of charged spherical particles with monatomic body-centered cubic crystal lattice are 

studied numerically. The model of the crystals is based on the nonlinear differential Poisson-Boltzmann equation. Elastic constants of the 

crystals are derived from the stress-strain dependencies obtained by means of computer experiment. Stability of the crystals and the presence 

of many-body effective interactions in them are briefly discussed. 
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1. Introduction 

The charge stabilized colloidal crystals are spatially ordered systems of electrically charged submicron particles immersed 

into a liquid electrolyte. Within the model approach of the present work, colloidal crystals are treated as a medium with initial 

stress governing by the non-linear differential Poisson-Boltzmann (PB) equation [1]. Elastic constants of the first and second 

order are derived from the stress-strain relations obtained numerically. Owing to the non-zero initial stress, elastic properties of 

charge stabilized colloidal crystals have some specificity as compared with conventional crystals [2]. 

2. Description of the Model 

Colloidal crystal studied in the present paper is a spatially ordered system of charged colloidal particles embedded into the 

binary symmetrical univalent electrolyte (1:1 electrolyte). The centers of the particles are located in the nodes of a body-centered 

cubic (bcc) lattice with the lattice parameter a . The particles are hard spheres of radius R . Electric charge of the particles is 

uniformly distributed over the surface with constant charge density  . Crystal with a bcc lattice has intermediate coordination 

number among the cubic lattices. Elastic properties and stability of such a colloidal crystal were not studied systematically 

earlier. 

Electric potential in the crystal obeys the PB equation which, for the case of 1:1 electrolyte, is  
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where 0n  is a bulk concentration of any of two species of the electrolyte, eq  is the elementary charge,  is a relative dielectric 

permittivity of the electrolyte, 0  is the electric constant, k is the Boltzmann’s constant, and T is an absolute temperature. Using 

the Debye length  
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   for measuring distances and unit ekT q  for electric potential, one can make all the 

other quantities dimensionless which are only used hereafter in the paper. In particular, equation (1) takes the following 
dimensionless form: 

2 sinh   . (2) 

The PB equation (2) incorporates the non-linearity of charge distribution with respect to the electric potential, so that the non-

linear effects are fully included. 

Due to the spatial ordering, the PB equation can be solved within only a single unit cell of the crystal provided the periodic 

boundary conditions are imposed onto the external boundaries of the cell. The Wigner–Seitz cell of a bcc lattice is used as a 

domain for the crystal in equilibrium. In the case of non-zero strain, the domain is a deformed initial Wigner-Seitz cell. The 

interior of the particle is excluded from the domain since the limiting case of large dielectric permittivity of the electrolyte 

compared to the permittivity of the particles is only studied, which leads to the following (dimensionless) boundary condition on 

the particle: 

   n . (3) 

A set of faces of the domain is resolved into seven pairs of oppositely located faces. The periodic boundary conditions for the 

electric potential and its gradient are 

   ( )m  r r r ,     1, ,7m  , (4a) 

   ( ) ( ) ( )'m m m      r n r r n ,     1, ,7m  . (4b) 

Here m is a number of a pair of opposite faces, ( )m
n  and ( )' m

n  are external unit normals of these faces in a pair, and ( )m
r  is a 

vector of primitive translations separating the faces. In the equilibrium,  (1) 1,0,0 ar ,  (2) 0,1,0 ar ,  (3) 0,0,1 ar , 
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 (4) 3 2 1,1,1 ar ,  (5) 3 2 1,1, 1 a r ,  (6) 3 2 1, 1,1 a r ,  (7) 3 2 1, 1, 1 a  r  in the basis of Cartesian coordinate 

system. Under strain, vectors ( )m
r , 1, ,7m  , are transformed accordingly. 

Equation (2) and boundary conditions (3) and (4) constitute the boundary value problem for the PB equation on the unit cell. 

Solution of this problem fully describes the properties of the colloidal crystal within the adopted model in any particular 

configuration. The boundary value problems were solved numerically by the finite element method. Calculations were partly 

supported by the Supercomputing Center of Lomonosov Moscow State University [3]. 

3. Numerical Experiment 

We use the stress-strain relations in the form that, up to the first order, are written as follows [4]: 

ij ij ij ijkl klC C     , (5) 

where 
ij  is the second Piola-Kirchhoff stress tensor, kl  is the Lagrange strain tensor, 

ijC  and 
ijklC  are tensors of elastic 

constants of the first and second order respectively, 
ij  is a Kronecker’s delta-symbol and dots designate quadratic and higher 

order terms. Elastic constants 
ijklC  have full Voigt symmetry. Any symbol in the subscripts goes over values 1, 2, 3 that 

corresponds to x, y and z direction respectively. The common rule of summation over repeating subscripts is implied. 

Due to the high symmetry, the bcc crystal has only one independent non-zero elastic constant of the first order, 11C , and  three 

elastic constants of the second order, 1111C , 1122C  and 1212C . They can be found in two experiments in which the Lagrange strain 

tensor has the form 
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respectively. Here   is a strain parameter that varies during the experiment. The first experiment provides two stress-strain 

relations 

11 11 1111C C     , (7a) 

22 11 1122C C     , (7b) 

while the second experiment gives 

12 12122C    . (7c) 

The stress tensor ij  is related to the Cauchy stress tensor klT  as follows: 

ij ik jl klJ T    , (8) 

where ij  are components of the tensor inverse to the deformation gradient tensor ij , det ijJ     , and ij ij iju   , where 

iju  is a displacement gradient. Since  1 2ij ij ji ki kju u u u    , the only non-zero components of tensor iju  are the following:

11 1 1 2u      in the first experiment and 2
11 22 1 1 2 1 4u u       ,  12 21 111u u u    in the second 

experiment. 

Components of the Cauchy stress tensor ikT  are calculated via the fundamental stress tensor ij  associated with the Poisson-

Boltzmann equation [5]: 
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where 
 m

kr  are components of vectors 
 m

r  described above, cV  is a volume of a unit cell of the crystal and integration is carried 

out over the surfaces of faces 
 m

S  pointed by vector 
 m

r  in every pair of the opposite faces of the cell. Again, the rule of 

summation over repeating subscripts is implied. Stress tensor ij  in (9) is 

21

2
( cosh 1)I          , (10) 

where I  is a unit tensor. 

Elastic constants of the crystal with parameters 4a  , 1R   and 2   were calculated. The size of the particles is chosen 

to be compatible with the Debye length which is pertinent to the nanoscale particles in dilute electrolytes. During computer 

experiments, the unit cell of the crystal was subjected to two series of strain described above and corresponding stress-strain 

dependencies were obtained. Strain parameter   in (6) varied from –0.01 to +0.01 with step 0.001. An appropriate boundary 

value problem for PB equation was solved numerically for every given  . 
The experimental stress-strain curves were fitted with polynomials. The best results were obtained with cubic polynomials. 

Coefficients of these polynomials gave the needed elastic constants 11C  and 1111C , 1122C , 1212C . 
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4. Results and Discussion 

The results of the numerical experiments are shown in the Table 1. The errors are equal to two standard deviations. The results 

of the present work are compared with the results obtained by different method described in [6]. In [6], series expansion of the 

Cauchy stress tensor with respect to the infinitesimal strain parameters was used to obtain an alternative set of elastic constants, 

11B , 1111B , 1122B , 1212B .  Then the C-constants can be calculated according to the following relations: 11 11C B , 

1111 1111 11C B C  , 1122 1122 11C B C  , 1212 1212 11C B C  [2]. The elastic constants obtained by this method for the system 

studied in the present paper are shown in the third column of the Table 1. Both sets of data are in a very good agreement with 

each other while the present results have a bit smaller scattering errors. Positivity of all the second order elastic constants means 

that the colloidal crystal with bcc lattice is stable within the present model. 

 

Table 1. Elastic constants of the bcc crystal 

Elastic constant Present work According to [6] 

11C  -0.3887139 ± 0.0000001 -0.3887138 ± 0.0000002 

1111C  1.28586 ± 0.00003 1.2858 ± 0.0001 

1122C  0.52833 ± 0.00003 0.52827± 0.00009 

1212C    0.59671 ± 0.000013 0.59676 ± 0.00003 

 

To estimate the presence of many-body effective interactions in the crystal, validity of the Cauchy relation 1122 1212C C  was 

verified [2]. The ratio 1122 1212C C  is equal to 0.88539 for the given crystal that is rather far from unity. This means that the 

effective interaction between colloids in the crystal is not purely pairwise and three- and many-body effective interactions can 
play some role in the system. 

5. Conclusion 

Numerical procedure for obtaining elastic constants of charge stabilized colloidal crystals from stress-strain relation is 

proposed and applied to the crystal with a bcc lattice. The elastic constants demonstrate that the crystal is stable relative to small 

strains and that the many-body effective interaction should be taken into account for proper description of the elastic properties 

of the crystal. The preliminary numerical results agree well with the results derived from earlier calculations by alternative 

method. Calculations for different values of the model’s parameters are carrying out at the moment. 
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