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There exists a big discrepancy between two existing methods of measuring the ambient glutamate concentration 

in the mammalian (human in particular) nervous system. This work focuses on the construction of a 

mathematical model that describes these techniques and explains the 100-fold difference in their measurements. 
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A neuron is a unit of the nervous system. It transmits information along itself through action 

potential, a  cross-membrane potential change, and passes signals to other cells through the 

structure called synapse. This work focuses on chemical synapses that use signaling molecules 

(neurotransmitters) as signal messengers. One of the most used excitatory neurotransmitter in 

the central nervous of the human and mammals in general is glutamate. It is directly or 

indirectly involved in most brain functions. A prolonged overstimulation of the glutamate 

receptors is harmful for neurons, thus it is important to measure the ambient baseline glutamate 

concentration for medical purposes as well as for future modeling and studies. Two different 

methods exists to estimate this value: microdialysis and electrophysiological methods. 

However, microdialysis measurement turns out to be about 100-fold higher than the 

electrophysiological measurement. 

Microdialysis is an invasive sampling technique that is widely used to measure the 

concentrations of free analyte in the extracellular fluid. The idea is to insert a microdialysis 

catheter with semipermeable walls into the tissue. Because of the perfusion, one is able to 

measure the concentration of the substance of interest after some time when the stable state of 

the system has been reached. It was suggested that because of the invasiveness of the 

microdialysis method the glutamate transporters activity could be reduced in a small region 

adjacent to the dialysis probe, which might lead to the overestimation of the glutamate 

concentration in the extracellular space. 

This work presents a mathematical model of this process constructed under several assumptions 

in order to investigate the dynamic and the steady state of the glutamate concentration inside 

the dialysis probe and in a small region nearby. The model is used to provide a possible 

explanation for the discrepancy of the two mentioned above methods. 
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