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Abstract. The paper outlines the mathematical modeling of the L1-L2 and L2-L1 missions 
using electric propulsion. The variation problem of the low thrust spacecraft transfer 
optimization, with total flight time as the optimization criterion is considered. The locally 
optimal control programs were obtained by using the Fedorenko method to estimate the 
derivatives, the gradient method to optimize the control laws and the Runge-Kutta method for 
the numerical integration of the differential equation system. As the result of optimization, 
optimal control programs and corresponding trajectories were determined for certain values of 
acceleration and jet stream velocity of the propulsion system. 
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1.  Introduction 
Nowadays the spacefaring nations are developing the missions to achieve the libration points of the 
Earth-Moon system, especially L1 and L2. The optimal interplanetary trajectories and the trajectories 
of flights to the Moon pass near the libration point L1 of the Earth-Moon system, as shown in works 
[1-2]. Moreover, the usage of the Lagrange points will help to decrease the fuel expenses for orbit 
maintaining, to start from the Earth at any moment without choosing the date of start, to monitor the 
solar wind and to avoid the radiation from the Earth. One of the main problems of such missions is to 
determine the optimal control structure of the spacecraft transfers. 

2.  Mathematical Model  
Let us formulate the general statement of the optimization problem. The following parameters are 
considered: 

x(t) = (r(t), V(t), mf(t),rE(t),rM(t), rS(t))T∈Xis a system state vector corresponding to boundary 
conditions, defined by the purpose of the transfer and possible restrictions, where Xis set of admissible 
state area; 

u(t) = (δ(t), e(t))T∈U is a vector of control functions, where U is set of admissible control 
parameters; 
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p = (a0, jsp)T∈P is the vector of optimized design parameters. It is limited by set of admissible area 
of the design parameters P. 

Here t is the current time, r(t) is a radius vector of the SC, V(t) is a vector of the SC velocity, mf(t) 
is a expended fuel mass, rE(t), rM(t), rS(t) are the radius-vectors of the Earth, the Moon and the Sun, 
δ(t) is the function of thrust switching, e(t) is the thrusting direction unit vector, a0 is the nominal 
acceleration of the SC in the initial orbit, jsp is the specific impulse of propulsion system (PS). 

The boundary conditions of the flight are shown in table 1. 

Table 1. Boundary conditions of the flights in the Earth-Moon system. 

 
Finishing 
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Radius-
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Velocity 
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Optimizing these space transfers with low thrust we need to determine the vectors uopt(t) and popt 
(vectors of optimal control functions and optimal design parameters correspondingly) that provide the 
minimum duration of flight T to perform the mission purposes according to table 1. 

X
PU

∈==
∈∈

x
pu

,min
,

unfixedmTT        (1) 

The transfers areconsidered in the terms of the BCI frame with the corresponding motion equations 
[3]. The following assumptions are made: the eccentricity of the Moon and the Earth orbits around 
barycenter is neglected; the eccentricity of the gravitational fields of the Earth, the Moon and the Sun 
is neglected, the SC sometimes moves in the Earth and the Moon shadow. 

3.  Methods 
In this work we use the Fedorenko successful linearization method [1] that accepts the limitation on 
composed functions that have Freshe derivatives. The method is based on making the variation 
optimal control problem the iteration problem of linear programming. The functional to optimize was 
chosen as a sum of the fuel used during the transfer and the components accounting for the conditions 
of the spacecraft final orbit insertion: 
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where kr  is a radius of the final orbit, Mω  – Moon rotation rate around the barycenter of the system, 

kvϕ  – angular rotation rate on the final orbit, n – the number of the final segment of the transfer. 
To solve the settled problem we should find the following variables: 
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The exact solution of the problem was established with the use of the Pontryagin maximum method 
and the numerical integration. The analysis of that solution shows, that the transfer trajectory has three 
general segments of work (figure 1). Each of the general steps of the transfer control program was 
divided into several segments of work to provide better accuracy. 

The thrust is directed at the angle i
1λ to the radius-vector of the SC. Thus, uis a piecewise 

continuous function which is determined by the following parameters: i
k

ii T,T, ∂∂ 01λ  (each i
1λ

iT0∂ and 
i

kT∂  is relevant to the corresponding segment of the trajectory). 
So, according to notations of the Fedorenko method we have: 

}{u i]i[
1λ= , }T{p i]i[

0= , }c,a{q 00= ,      (4) 
where 0a  – spacecraft acceleration, 0c – exhaust velocity. As can be seen form (2) the functional 

does not include the integral component, it consists only of the terminal component and depends on 
the following state vector:  
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Figure 1.Transfer general stepwise control structure. 

Afterhavingthemotionequations [3] withtheboundaryconditions (table 1) integratedwe get the state 
vector components relevant to the final transfer segment determined. 
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Then we plug the right parts of the motion equations into (6): 
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Here we can estimate the costate functions derivatives by deriving the Hamiltonian with respect to 
the corresponding state coordinates: 
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Thescalarfunctionµ determines the finishing time of the each segment. In this case each of thefiveµ 
functions is a null vector, because there is no discontinuous jumps of the state coordinates on the 
transfer segments boundaries. 

To determine the needed derivatives we need to find the following variables: 
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Then the motion equations right parts for the state coordinates should be found: 
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Nowthecostatefunctionsvaluesinthefinalpointscouldbefound: 
]n[

xxT
]n[ dF| µψ ⋅+= ,        (12) 

























−

−

−

=

























1
2
2
2
2

2

2

)v)t(v(
)t(v

)t)t((
)r)t(r(

L
]n[

k
]n[

]n[
k

]n[
r

]n[
kM

]n[
k

]n[

L
]n[

k
]n[

m

v

rv

r

ϕϕϕ

ϕ ωϕ

ψ

ψ

ψ

ψ
ψ

.       (13) 

Let us find 
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As all the initial boundary conditions are constants, we have: 
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Thus, we found the analytical expressions for all the functional derivatives (3), therefore, the 
problem is solved. 

4.  Results  
The optimal control programs for the L1-L2 and L2-L1 transfers and corresponding trajectorieswere 
obtained. The time duration of the L1-L2 transfer was equal to 5.9 days and the duration of the L2-L1 
transfer was equal to 6.7 days.  

The results of the flight simulation and optimization showed that the general trajectory consists of 
alternating passive and active segments, but in particular cases one of the segments can disappear, 
particularly, the first passive segment of the L1-L2 transfer. The obtained trajectories and control 
programs are in good agreement with the ones derived in [3, 4]. Clearly, for ballistic optimization of 
mission, it is necessary to balance between fuel consumption and mission duration. 

 
5.  Conclusion 
The usage of the Fedorenko successful linearization method along with the gradient method in the 
three-body task framework allows us to obtain optimal steering and the motion trajectories for 
spacecraft with low-thrust engines. The approach used in the paper is applicable only for the 
estimative computations, however, it can be improved by adding the gravitational correction caused by 
the Earth and the Moon oblateness. The above-mentioned conditions will be taken into account in the 
future works. Findings may be used to design the required -ballistic parameters of the future lunar 
missions. 
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