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Abstract. In the paper, we investigate effectiveness of modified many-factor (bilateral, tri-, 

and four-lateral) denoising MIMO-filters for grey, color, and hyperspectral image procession. 

Conventional bilateral filter performs merely weighted averaging of the local neighborhood 

pixels. The weight includes two components: spatial and radiometric ones. The first component 

measures the geometric distances between the center pixel and local neighborhood ones. The 

second component measures the radiometric distance between the values of the center pixel 

and local neighborhood ones. Noise affects all pixels even onto the centre one used as a 

reference for the tonal filtering. Thus, the noise affecting the centre pixel has a disproportionate 

effect onto the result. This suggests the first modification: the center pixel is replaced by the 
weighted average (with some estimate of the true value) of the neighborhood pixels contained 

in a window around it. The second modification uses the matrix-valued weights. They include 

four components: spatial, radiometric, inter-channel weights, and radiometric inter-channel 

ones. The fourth weight measures the radiometric distance (for grey-level images) between the 

inter-channel values of the center scalar-valued channel pixel and local neighborhood channel 

ones. 

1. Introduction 

We develop a conceptual framework and design methodologies for multichannel image many-lateral 
(bilateral, 3-, and 4-lateral) aggregation filters with assessment capability.  The term “multichannel” 

(multicomponent, multispectral, hyperspectral) image is used for an image with more than one 

component. They are composed of a series of images in different optical bands at wavelengths 

1 2
, , . . . ,

K
   , called spectral channels:    

2
1 2

1

,( ) ( ) , ( ) , ... , ( , ) ( ) , ( ) , ... , ( )
K

K

f f f y f f f f x x x x x x x
  

where 

K  is the number of different optical channels, i.e., 2
: ,

K
f R R   where K

R  is multicolor space. The 

bold font for ( )f x emphasizes the fact that images may be multichannel.Each pixel in ( )f x , therefore, 

represents the spectrum at the wavelengths 
1 2
, , . . . ,

K
   of the observed scene at point 2

( , ) .i j x Z  

Let us introduce the observation model and notions used throughout the paper. We consider noised 

image in the form ( ) ( ) ( ),f x s x n x  where ( )s x  is the original grey-level image and ( )n x  denotes 

the noise introduced into ( )s x  to produce the corrupted image ( )f x  and where 2
( , )i j x Z  (or 

3
( , , )i j k x Z )  is a 2D (or 3D) coordinates that belong to the image domain and represent the pixel 

location. If 2 3
,x Z Z  then ( ), ( ),f x s x ( )η x  are 2D or 3D images, respectively. The aim of image 
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enhancement is to reduce the noise as much as possible or to find a method which, given ( )s x , derives 

an image ˆ ( )s x  as close as possible to the original ( )s x , subjected to a suitable optimality criterion. 

The standard bilateral filter (BF)  [1-9] with a square N -cellular window ( )M x  
is located at x , 

the weighted average of pixels in the moving window replaces the central pixel 

   
( )

( )

1
ˆ ( ) , ( ) , ( ) ,

( )M
M

w w
k



     
  

p
p

x
x

s x B ilM ea n x p f p x p f p
x

                (1) 

where ˆ ( )s x  is the filtered image and ( )k p  is the normalization factor 

 
( )

( ) , .

M

k w



 
p x

x x p                                                             (2) 

Equation (1) is simply a normalized weighted average of a neighborhood of a N -cellular window 

( )M x (i.e., the mask around pixel x , consisting of N  pixels).  

The scalar-valued weights  ,w x p
 
are computed based on the content of the neighborhood. For 

pixels  
( )

( )
Mp x

f p
 
around the centroid ( )f x , the weights   

( )
,

M
w

p x
x p  are computed by multiplying 

the following two factors:      2
( , ) ( , ) || || | | ( ) ( ) || .

S p R n S p R n
w w w w w    x p p x p p f x f p

 
The weight 

includes two factors – spatial  | | | |
S p

w p and radiometric  2
( , ) || ( ) ( ) ||

R n R n
w w x p f x f p  weights. 

The first weight measures the geometric distance || ||p between the center pixel ( )f x and the pixel 

( )f p  (note, the centroid x  has the position ( )M0 x  inside of the mask ( )M x ). Here the Euclidean 

metric 
2

| | | | | | | |p p is applied. This way, close-by pixels influence the final result more than distant 

ones. The second weight measures the radiometric distance between the values of the center sample 

( )f x and the pixel ( )f p , and again, the Euclidean metric 
2

| | ( ) ( ) ||f x f p is chosen, too. Therefore, 

pixels with close-by values tend to influence the final result more than those having distant value. The 
traditional bilateral filter uses the Gaussian or Laplacian kernels for both spatial and range (or tonal) 

filtering. The classical bilateral filter is a non-linear filter which takes into account local image 

information in order to build a kernel which smoothes without smoothing across edges.  
This paper considers two natural extensions to the bilateral filter. Firstly, instead of the center pixel 

( )f x  
in  || ( ) ( ) ||

R n
w f x f p , we use a certain mean or median ( )f x  (for example, the suboptimal 

Fréchet median ( ) ( )
so p t

f x f x  [11]) of a neighborhood of a N -cellular window ( )M x  for calculating 

of weighs   2
( , ) || ( ) ( ) ||

R n R n so p t
w w x p f x f p .  Secondly, instead of a scale-valued weigh, we use a 

matrix-valued one 

 
( )

ˆ ( ) , ( ) ,
M

   
 

p x

s x B ilM e a n W x p f p                                              (3) 

where  ,W x p  are the matrix-valued weighs. 

2. The first modification of bilateral filters 

In this modification we use the suboptimal Fréchet median ( )
so p t

f x
 
for calculating of weighs ( , )

R n
w x p

 

instead of the center pixel ( )f x
 
in 

R n
w :    || ( ) ( ) || || ( ) ( ) ||

R n R n sop t
w w  f x f p f x f p .Let ,

K
R   be a 

metric spaces, where   is a distance function (i.e, :
K K 

 R R R ). Let 
1 2
, , . . . ,

N
w w w  be N  weights 

summing to 1 and let  
1 2
, , . . . ,

N K
 f f f D R  be N  pixels in the N -cellular window ( )M x .  

Definition 1 [10, 11]. The optimal Fréchet point associated with the metric ,  is the point 

,
K

o p t
f R  that minimizes the Fréchet cost function (FCF)   

1

,

N

i

i

i

w 



 f f  (the weighted sum distances 

from an arbitrary point f  to each point 1 2
, , . . . ,

N K
f f f R ). It is formally defined as:  

   
1 2

1

| , , . . . , , .
K

N

N i

o p t i

i

w




  
f R

f F rech M ed f f f a rg m in f f = =                      (4)  
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Note that argmin means the argument, for which the sum is minimized. So, the vector-

valuedmedian of a discrete set of sample points in a Euclidean space K
R  is the point minimizing the 

sum of distances to the sample points. This generalizes the ordinary median, which has the property of 

minimizing the sum of distances for one-dimensional data, and provides a central tendency higher 
dimensions. 

In computation point of view, it is better to restrict the search domain from K

R until the set 

 
1 2
, , . . . ,

N K
 D f f f R . In this case, we obtain definition of the suboptimal Fréchet point or the optimal 

vector Fréchet median.  
Definition 2 [10,11]. The suboptimal weighted Fréchet point or optimal Fréchet median associated 

with the metric   is the point,  
1 2
, , . . . ,

N K

so p t
 f f f f R , that minimizes the FCF over the the restrict 

search domain K
D R : 

   

2

1 2

1

| , , . . . , , .

N

N i

so p t i

i

w
 

  
f D

f F r e ch M ed f f f a rg m in f f =

                

 (2) 

Example 1. If observation data are real numbers, i.e.,
1 2
, , ...,

N
f f f  R  and distance function is the 

city distance 
1

( , ) ( , ) ,f g f g f g     then the optimal Fréchet point (4) and optimal Fréchet 

medians (5) for grey-level pixels 
1 2
, , ...,

N
f f f  R  to be the classical Fréchet point and median, 

respectively, i.e.,  

 
2

1 2

1

1

| , , . . . , ,

N

N i

o p t

i
f

f f f f f




  
R

f F rech P t a rg m in

                  

 (3) 

   
1 2 1 2

1

1

| , , . . . ,  , , . . . , .

N

N i N

so p t

i

f f f f f f f f
 

   
f D

f F rech M ed a rg m in M ed

          

(4) 

Example 2. If observation data are vectors, i.e., 1 2
, , . . . ,

N K
f f f R , and distance function is the city 

distance 
1

( , ) ( , ) ,f g f g   then the optimal Fréchet point (4) and optimal Fréchet medians (5) for 

vectors 1 2
, , . . . ,

N K
f f f R  to be the Fréchet point and theFréchet vector median, associated with the 

same metric 
1
( , )f g ,  

 
1 2

1 1

1

| , , . . . , | | | | ,
K

N

N i

o p t

i 

 
   

 


f R

f F r e ch P t f f f a rg m in f f

                

 (5) 

   
1 2 1 2

1 1 1

1

| , , . . . , | | | | | , , . . . , .

N

N i N

so p t

f i 

 
    

 


D

f F r e ch M ed f f f a rg m in f f V ecM ed f f f 

      

(6) 

Now we use Fréchet median 
so p t

f  for calculating radiometric weights 

 2
( , ) || ( ) ( ) || .

R n R n so p t
w w x p f x f p

 
The modified bilateral filter (MBF) is given as 

     2
( )

( )

1
ˆ ( ) , ( ) || || || ( ) ( ) || ( ) ,

( )
S p R n so p t

M
M

w w w
k



       
  

p
p

x
x

s x B ilM ea n x p f p p f x f p f x
x

        

(10)  

where ˆ ( )s x  is the filtered image. 

3. The second modification. Four-lateral MIMO-filter 

In the case of the multichannel images, processed data are vector-valued 2

( ) : :
K

f x R R

 1 2 1
( ) ( ), ( ), ..., ( ) [ ( )] .

K

K c c
f f f f


 f x x x x x By this reason, we must use matrix-valuedweights 

  
( )

,
Mp x

W x p , where  ,W x p  is a  K K -matrix, and  K  is the number of different channels in 

2

.( ) :
K

f x R R The 4-factor MIMO-filter suggests a weighted average of pixels in the given image  

 
 

 
( )

( )1 2

,
1

ˆ ( ) , ( ) , ( )
( ) , ( ) , . . . , ( )

K
M

Mk k k


    
  

4

p
p

x
x

s x M IM O F a c tM ea n W x p f p W x p f p
d ia g x x x

   

(7) 

or in component-wise form  
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   
( ) 1 ( ) 1

1
ˆ ( ) , ( ) , ( ) ,

( )

K K

a b a b

a b b

b ba M M

s w f w f
k    

      
p px x

x x p p x p p
x                       

(8) 

where ˆ ( )s x  is the filtered multichannel image, ˆ ( )
a

s x  is its  ath channel, /
a b a b

a
w w k , 

     
1 1 1

1 2
, ( ) , ( ) , . . . , ( ) , ,

K
k k k

  
 W x p d ia g x x x W x p ( )

a
k p  is the normalization factor  in the ath 

channel: 

 
( ) 1

( ) ,

K

a b

a

bM

k w

 

  
p x

x x p                                      (9) 

and  1 2
( ), ( ), ..., ( )

K
k k kd iag x x x  is diagonal matrix with channel normalization factors. Note, that 

 
   

     

     

     

1 2

1 1 1 2 11

11

2 1 2 2 21

22

1 21

1
, ( ) , ( )

( ) , ( ) , . . . , ( )

( ), , ,( )

( ), , ,( )
.

( ), , ,( )

K

K

K

K K K K

KK

k k k

fw w wk

fw w wk

fw w wk







   

    
    
    
    
    

        

W x p f p W x p f p
d ia g x x x

px p x p x px

px p x p x px

px p x p x px

 

The normalized matrix-valued weights  ,W x p are computed based on the content of the 

neighborhood. For pixels ( ),  ( )Mf p p x around the Fréchet centroid ( )
so p t

f x , the scalar-valued 

weights ( , )
cd

w x p  of the matrices  , , ( )MW x p p x  are computed by multiplying the following four 

factors: 

       2 ,
( , ) || | | | | ( ) ) ( ) || ( ) ( ) .

c d

S p C h R n so p t R n c so p t d
w w w c d w w f f      x p p f x f p x p  

The weight includes four factors: spatial  | | | |
S p

w p , inter-channels   C h
w c d , global radiometric 

 2
| | ( ) ) ( ) ||

R n so p t
w f x f p , and radiometric inter-channels weights  ,

( ) ( ) .
R n c so p t d

w f fx p  The first factor 

 | | | |
S p

w p measures the geometric distance between the center pixel ( )
so p t

f x and the neighborhood 

pixels ( ),  ( )Mf p p x . The second factor  C h
w c d  measures the spectral (inter-channel) distance. 

The third factor  2
| | ( ) ( ) ||

R n so p t
w f x f p  measures the global radiometric distance between the values of 

the Fréchet center ( )
so p t

f x and the pixels ( ),  ( )Mf p p x . The fourth factor  ,
 ( ) ( )

R n c o p t d
w f fx p  

measures the radiometric distance between the values of the center sample 
,

( )
c so p t

f x  of the c -channel 

and the pixel ( ) ,  ( )
d

f Mp p x  of the d -channel. All weights    ,
, ( ) ( )

c d

R n R n c o p t d
w w f f x p x p  form N

radiometric inter-channel  K K -matrices 

        ,
( ) , 1 , 1( ) ( )

, , ( ) ( )

KK
cd

R n R n R n c o p t d
M c d c dM M

w w f f
   

    
   p x

p x
p x

W x p x p x p  

If N -cellular window is used. We obtain 3-factor MIMO-filters if we are going to use only three 

ingredients, for example,      2 ,
( , ) || | | | | ( ) ( ) || ( ) ( )

cd

S p R n o p t R n c o p t d
w w w w f f    x p p f x f p x p

 
or 

     ,
( , ) || | | ( ) ( )

cd

S p C h R n c o p t d
w w w c d w f f    x p p x p . 

4. Simulation results 

Some variants of the proposed filters are tested. They are compared on real image “LENA”.  Noise is 

added (see Fig. 1) with different the Peak Signal to Noise Ratios (PSNRs). The noised  images has 

1% noised pixels (PSNR =  25.36 dB), 5% noised pixels (PSNR = 18.34 dB), 10% noised pixels 
(PSNR = 15.41 dB), 20%  noised pixels (PSNR =  12.64 dB), 50% noised pixels (PSNR =  9.22 dB). 

Fig. 2-4 summarize the results for “Salt and Pepper” noise and bilateral filters with Laplacian weights 



Секция: Обработка изображений и дистанционное зондирование Земли 

Many-lateral MIMO-filters for hyperspectral image filtering 

VI Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2020)  586 

 ( , ) ex pw f g f g    for different α = 0.035 (Fig. 2), α = 0.07 (Fig. 3), α = 0.1 (Fig. 4).  Fig. 2-4 

show the results obtained by the following bilateral filters with 
3

( -mask  

 the classical bilateral filter (1)  (BF3x3), 

 modified bilateral filter (10) (BF3x3Med), where ( )f x  is calculating as classical median in 

each channel,  

 modified bilateral filter (10)  (BF3x3Fr1), where ( )f x  are calculating as Fréchet median 

( ) ( )
o p t

f x f x  with distance 
1

( , ) ( , ) ,f g f g   

 modified bilateral filter (10)  (BF3x3Fr2), where ( )f x  are calculating as Fréchet median 

( ) ( )
o p t

f x f x  with distance 
2

( , ) ( , ) ,f g f g   

 
modified bilateral filter (10)  (BF3x3Fr∞), where ( )f x  are calculating as Fréchet median 

( ) ( )
o p t

f x f x  with distance ( , ) ( , ) .


f g f g 
 

It is easy to see that results for all modified bilateral filters are better, compared to the classical 

bilateral filter BF3x3. 

   
                  а) Original image         b) Noised  images, PSNR = 25.36 c) Noised  images, PSNR = 18.34 

   
    d) Noised  images, PSNR = 15.41  e) Noised  images, PSNR = 12.64 f) Noised  images, PSNR = 9.22 

Figure 1. Original (a) and noised (b) images; noise: Salt-Pepper; denoised images (c)-(f). 

5. Future work 

In future, we are going to use in (10) and (11) a generalized average (aggregation) [11-13] instead of 

ordinary mean. The aggregation problem [11-13] consist in aggregating n-tuples of objects all 

belonging to a given set S , into a single object of the same set S , i.e., : 
n

S SA g g . In the case of 

mathematical aggregation operator the set S  is an interval of the real [0 ,1]S   R  or integer numbers 

[0 , 2 5 5]S   Z . In this setting, an AO is simply a function, which assigns a number y to any N -

tuple  1 2
, , ...,

N
x x x  of numbers:

1 2
( , , . . . , )

N
y x x x A g g reg

 
that satisfies:  

 

   

 

     1 2 1 2 1 2

1)  ,   

2 )  ( , , . . . , ) .  0 , 0 , .. . , 0 0   1,1, .. . ,1 1,  

    2 5 5 , 2 5 5 , ... , 2 5 5 2 5 5 .

3 )   , , . . . , , , . . . , , , . . . , .

In  p a r t ic u la r , a n d o r

N

N N N

x x

a a a a

x x x x x x x x x



  



 

A g g

A g g A g g A g g

A g g

m in A g g m a x
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         а) Filtration of “Salt and Pepper” noise with               b) Filtration of “Salt and Pepper” noise with 

1% noised pixels     5% noised pixels 

   
с) Filtration of “Salt and Pepper” noise with 10%         d) Filtration of “Salt and Pepper” noise with 20%  

                                noised pixels       noised pixels 

 
e) Filtration of “Salt and Pepper” noise with 50% noised pixels 

Figure 2. The results for “Salt and Pepper” noise and bilateral filters with Laplacian weights for α = 0.035. 

  
а) Filtration of “Salt and Pepper” noise with  b) Filtration of “Salt and Pepper” noise with 

1% noised pixels           5% noised pixels 

      
с) Filtration of “Salt and Pepper” noise with  d) Filtration of “Salt and Pepper” noise with 

10% noised pixels        20% noised pixels 

 
e) Filtration of “Salt and Pepper” noise with 50% noised pixels   

Figure 3. The results for “Salt and Pepper” noise and bilateral filters with Laplacian weights for α = 0.07. 

 

Here  1 2
, , ...,

N
x x xm in  and  1 2

, , ...,
N

x x xm ax  are respectively the minimum and the maximum 

values among the elements of  1 2
, , ...,

N
x x x . 

All other properties may come in addition to this fundamental group. For example, if for every 

permutation 
N

  S  of  1, 2 , ..., N  the AO satisfies:    (1 ) ( 2 ) ( ) 1 2
 , , . . . , , , . . . , ,4 )

N N
x x x x x x
  

A g g A g g then 

it is invariant (symmetric) with respect to the permutations of the elements of  1 2
, , ...,

N
x x x . In other 

words, as far as means are concerned, the order of the elements of  1 2
, , ...,

N
x x x  is - and must be - 

completely irrelevant.  
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                а) Filtration of “Salt and Pepper” noise with  b) Filtration of “Salt and Pepper” noise with 

1% noised pixels         5% noised pixels 

  
с) Filtration of “Salt and Pepper” noise with  d) Filtration of “Salt and Pepper” noise with 

   10% noised pixels           20% noised pixels 

 
e) Filtration of “Salt and Pepper” noise with 50% noised pixels 

Figure 4. The results for “Salt and Pepper” noise and bilateral filters with Laplacian weights for α = 0.1. 

 
Proposition 1.  (Kolmogorov [13]). If conditions 1)–4) are satisfied, the aggregation 

1 2
( , , . . . , )

N
x x xA g g  of the average type are as of the forms:    

   
1

1 2

1

,

1
| , , . . . ,

N

N i

i

K x x x K K x
N





 
  

 
K o lm  

where K  is a strictly monotone continuous function in the extended real line.  

We list below a few particular cases of means: 

1) Arithmetic mean ( ( )K x x ):
1 2

1

1
( , , . . . , ) .

N

N i

i

x x x x
N 

 M ea n  

2) Geometric mean ( ( ) lo g ( )K x x ):
1 2

1

1
( , , . . . , ) e x p ln .

N

N i

i

x x x x
N 

 
  

 
G eo  

3) Harmonic mean ( 1
( )K x x


 ): 

1

1 2

1

1 1
( , , . . . , ) .

N

N

i i

x x x
N x





 
  

 
H a rm  

4) A very notable particular case corresponds to the function ( )
p

K x x . We obtain then a quasi- 

arithmetic mean of the form:  

1

1 2

1

1
, , . . . , .

N p
p

p N i

i

x x x x
N 

 
  
 

P o w e r  This family is particularly 

interesting, because it generalizes a group of common means, only by changing the value of p

.A very notable particular cases correspond to the logic functions (min; max; median):  

1 2
( , , . . . , ) ,

N
y x x x M in

1 2
( , , . . . , ) ,

N
y x x x M a x

1 2
( , , . . . , ) .

N
y x x x M ed  

In a 2D standard linear and median scalar filters with a square N -cellular window ( )M x  and 

located at x  the mean and median replace the central pixel 

   
( ) ( )

( ) ( ) ,    ( ) ( ) ,
M M

s f s f
 

 
p x p x

x M ea n p x M ed p                             (10) 

where ( )s x  is the filtered grey-level image,  
( )

( )
M

f
p x

p  is an image block of the fixed size N extracted 

from f  by moving N -cellular window ( )M x  at the position x , M ean  and M ed  are the mean 

(average) and median operators. When filters (14) are modified as follows  
       ( )

( ) = ( ) ,
M

M

s f
p x

x A g g p we 
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get the unique class of nonlinear aggregation SISO-filters proposed in [14-16], where M
A g g  is an 

aggregation operator on the mask ( )M x . 

For MIMO-filters we have to introduce a vector-valued aggregation. Note, that for ordinary vector-

matrix product g W f  we have in component-wise form
1 1 2 2

1

. . . .

K

c c c cK K cd d

d

g w f w f w f w f



       

Let us introduce vector-matrix aggregation product 
A g g

g W f  in component-wise form by the 

following way    1 1 2 2 1
A g g , , ..., , A g g ,

K

c c c cK K d cd d
g w f w f w f w f


   where A g g  is an aggregation 

operator. Obviously, we can use different aggregation operators in different channels
 

   1 1 2 2 1
 A g g , , ..., , =  A g g ,

c c K

c c c cK K d cd d
g w f w f w f w f


                    (15) 

For 1, 2 , ... , ,c K  where  
1 2

A g g , A g g ,.. . , A g g
K

A g g  is the a K -element set of aggregation operators. 

In this case we write .
A g g

g W f  When 4-factor MIMO-filter (11) is modified as follows  

 
M

( )

ˆ ( ) , ( ) ,
g

M

 
 

4

A g

p x

s x M IM O F a c t A g g W x p f p                              (16) 

or in component-wise form 

   1

( )

ˆ ( ) , ( )
M c K cd

c d d

M

s w f




 
p x

x A g g A g g x p p                            (17) 

we get the unique class of nonlinear aggregation MIMO-filtersthat we a going to research in future 

works. They are based on 1K   of aggregation operators: 1) A g g
M  (aggregation on the mask ( )M x ) 

and 2)  
1 2

A g g , A g g ,.. . , A g g
K

A g g  (inter-channel aggregation), which could be changed 

independently of one another. For each set of aggregation operators, we get the unique class of new 

nonlinear filters. 

6. Conclusion  

A new class of nonlinear generalized 2-, 3-, and 4-factor MIMO-filters for multichannel image 
processing is introduced in this paper. Weights in 4-factor MIMO-filters include four components: 

spatial, radiometric, interchannel and interchannel radiometric weights. The fourth weight measures 

the radiometric distance (for grey-level images) between the interchannel values of the center scalar-
valued channel pixel and local neighborhood channel pixels.  
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