Итерационный подход на основе FDTD-метода к расчету металл-диэлектрических фотоннокристаллических элементов

П.В. Мокшин Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия mokshinfabio@gmail.com Д.Л. Головашкин Институт систем обработки изображений – филиал ФНИЦ «Кристаллография и фотоника» РАН Самара, Россия golovashkin2010@yandex.ru

2.

Аннотация—Предлагается подход к расчету фотоннокристаллических элементов, отличающийся от известных методов оптимизации общего назначения (например, генетического алгоритма или градиентных процедур) использованием информации о дифракционных картинах на разных частотах при оптимизации элемента, предназначенного для работы на одной выбранной длине волны.

Ключевые слова— фотонно-кристаллический элемент, FDTD-метод, итерационный подход.

1. Введение

Фотонно-кристаллические структуры с успехом применяются для создания волноводов, сенсоров. логических элементов и других устройств современной фотоники [1]. Весьма актуальным представляется расчет таких структур для терагерцового диапазона, использование которого характеризуется определенной новизной [2]. В известной авторам настоящей работы литературе [1-4] основное внимание уделяется анализу фотонно-кристаллических структур, связанному с определением их свойств на разных частотах. Вместе с тем безусловный интерес представляет обратная задача расчет структур с ожидаемыми характеристиками (например, волноводов) под определенную длину волны заданную монохроматическим (пусть источником излучения).

электромагнитного Моделируя распространение через фотонные кристаллы излучения принято использовать численные методы решения уравнений Максвелла, относящиеся к инструментарию строгой теории дифракции: FEM (Finite Element Method) [2,4] и FDTD (Finite-Difference Time-Domain) [3], каждый из которых характеризуется известными достоинствами и недостатками. Учитывая особенность далее излагаемого подхода, в рамках которого предполагается работа с набором широкополосных импульсов (при том, что результирующая фотонно-кристаллическая структура оптимизируется под фиксированную длину волны), наиболее естественным представляется применение FDTD-метода, изначально предназначенного лля моделирования таких полей: когда в ходе одного вычислительного эксперимента получаются результаты для заданного набора частот. В качестве программного обеспечения для моделирования был выбран соответствующий пакет софта Ansys Lumerical 2022 R1 (набор Ansys Lumerical FDTD Simulation of Photonic Components).

В.С. Павельев Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия pavelyev10@mail.com

Итерационный подход на основе fdtdметода

Задавая любой итерационный подход, традиционно говорят о выборе начального приближения, переходе от текущего приближения к следующему и критерии останова. Здесь под начальным приближением будет пониматься фотонно-кристаллическая структура, наиболее подходящая по мнению исследователя (основанному на практическом опыте, расчете в рамках менее строгой теории, публикации и т.п.) для такой роли.

Переход к следующему k-ому приближению сопровождается проведением моделирования (по FDTDметоду) распространения широкополосного импульса через структуру, полученную в ходе предыдущего приближения. По итогам такого моделирования выделяется длина волны λ', для которой результирующая дифракционная картина признается наилучшей среди остальных картин (для других длин волн) в соответствии эффективности заданным критерием фотоннокристаллического элемента (например, пол эффективностью б можно понимать отношение энергии вышедшего из волновода излучения к энергии вошедшего на выбранной длине волны). В конце текущей итерации геометрические параметры элемента пересчитываются с сохранением отношения $d^{k-1}/\lambda' = d^k/\lambda_0$, где λ_0 – основная длина волны (под которую рассчитывается элемент), d^{k-1} и d^k – периоды фотонно-кристаллических структур, рассчитанные в конце предыдущей и текущей итераций соответственно. Т.е. $d^k = d^{k-1} \lambda_0 / \lambda'$. При этом все пропорции неоднородностей внутри фотонного кристалла (например, γ – отношение периода к радиусу цилиндра) сохраняются и геометрические размеры упомянутых неоднородностей пересчитываются в соответствии с этими пропорциями.

На каждой итерации моделирование сопровождается распространением через новую структуру одного и того же импульса с центральной длиной волны λ_0 (или импульсов, содержащих λ_0). Критерием останова итерационного процесса будет достижение наперед заданного значения эффективности на центральной длине волны.

3. ПРИМЕР РАСЧЕТА МЕТАЛЛ-ДИЭЛЕКТРИЧЕСКОГО ФОТОННО-КРИСТАЛЛИЧЕСКОГО ВОЛНОВОДА

Отметим, что для расчета диэлектрических структур довольно одной итерации при искусственном допущении об отсутствии дисперсии материала (такое допущение

VIII Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2022) Том 1. Компьютерная оптика и нанофотоника

хоть и не физично, но позволяет быстро получить результат). Учет дисперсии обязателен для численной устойчивости FDTD-метода при работе с металлдиэлектрическими структурами, что обуславливает итерационный характер предлагаемого подхода к расчету таких фотонно-кристаллических элементов. Упомянутый учет является отличительной особенностью пакета Ansys Lumerical 2022 R1 FDTD, используемого авторами настоящей работы при постановке вычислительных экспериментов. Так, вкладка «Materials» в графическом интерфейсе Ansys Lumerical FDTD связана с возможностью автоматически учитывать дисперсию известных материалов. Кроме того, допускается задание дисперсионных характеристик собственной среды.

ТАБЛИЦА 1. ХАРАКТЕРИСТИКИ ИТЕРАЦИОННОГО ПРОЦЕССА

k	Длина волны λ' (мкм)	Диаметр d ^{k-1} (мкм)	Эффективность б (%)
1	60,8	40	91,4
2	62,6	41,2	95,9
3	67	43,7	96,7
4	59	49,5	97,2

Проиллюстрируем изложенное на примере расчета фотонно-кристаллического волновода из [4], где рассматривается двумерный кристалл, задаваемый решеткой из медных стержней кругового сечения ($\gamma = 2,62$). Линейный дефект (часть стержней вдоль выбранного направления удалена) обуславливает каналирование терагерцового излучения на длине волны $\lambda_0 = 59$ мкм.

Итерационный процесс (таблица 1) сходится к решетке с периодом d = 50 мкм из [4], что подтверждает работоспособность предложенного подхода.

4. Заключение

Обоснован и формализован подход на основе FDTDметода к синтезу металл-диэлектрических фотоннокристаллических структур. На выбранном примере двумерного кристалла, задаваемого решеткой медных стержней кругового сечения, демонстрируется работоспособность предложенного подхода. Его развитие авторы связывают с расчетом более сложных фотоннокристаллических структур и строгим математическим обоснованием сходимости итерационного процесса.

ЛИТЕРАТУРА

- Kumar, N. Advances in Photonic Crystals and Devices / N. Kumar, B. Suthar. – London: CRC Press, 2020. – 358 p.
- [2] Hossain, M.S. Design of a chemical sensing circular photonic crystal fiber with high relative sensitivity and low confinement loss for terahertz (THz) regime / M.S. Hossain, S. Shuvo, M.M. Hossain // Optik – Int. J. Light Electron Optics.– 2020. – Vol. 222. – P. 165359.
- Johnson, S.G. Advances in FDTD Computational Electrodynamics Photonics and Nanotechnology / S.G. Johnson, A. Oskooi, A. Taflove.
 – London: Artech House, 2013. – 670 p.
- [4] Degirmenci, E. THz waveguide and bends based on metallic photonic crystals / E. Degirmenci, F. Surre, P. Landais // Terahertz and Mid Infrared Radiation. – Dordrecht: Springer, 2011. – P. 23-27.