Исследование векторного гауссова пучка с цилиндрической поляризацией высокого порядка вблизи острого фокуса: спиновый эффект Холла

В.В. Котляр ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия kotlyar@ipsiras.ru

С.С. Стафеев ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия sergey.stafeev@gmail.com

В.Д. Зайцев ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, Самарский национальный исследовательский университет им. академика С.П. Королева Самара, Россия zaicev-vlad@yandex.ru

Аннотация— Известно, что у цилиндрического векторного пучка поляризация локально-линейна. В начальной и в фокальной плоскости такие пучки не имеют ни спинового, ни орбитального углового момента. В данной работе показано, что вблизи фокальной плоскости остросфокусированного гауссова пучка с цилиндрической поляризацией высшего порядка формируются области, в которых вектор линейной поляризации вращается, причём в соседних областях он вращается в разные стороны, то есть продольная составляющая векторов спинового углового момента в этих областях имеет противоположный знак. Такое разделение левого и правого вращения векторов поляризации является проявлением оптического спинового эффекта Холла.

Ключевые слова— спиновой эффект Холла, острый фокус, цилиндрический пучок, спиновый угловой момент, формализм Ричардса-Вольфа

1. Введение

В оптике хорошо известны цилиндрические векторные пучки (ЦВП) [1]. Во многих работах изучалась острая фокусировка ЦВП первого порядка [2], высших порядков [3] и дробного порядка [4]. В начальной плоскости и в фокусе ЦВП поляризация неоднородна и линейна в каждой точке поперечного сечения. На оптической оси в начальной плоскости такие пучки имеют точку поляризационной сингулярности, где направление вектора линейной поляризации [5] не определено. Распределение интенсивности ЦВП п-го порядка в остром фокусе имеет 2(n-1) локальных максимумов [5]. Спиновый угловой момент (СУМ) в начальной плоскости равен нулю. Равен нулю также и орбитальный угловой момент (ОУМ) в начальной плоскости и в фокусе.

В данной работе с помощью интегралов Дебая и численного моделирования показано, что вблизи острого фокуса формируются локальные субволновые области с эллиптической и круговой поляризацией разного знака.

2. Теория

А.А. Ковалёв

ИСОИ РАН – филиал ФНИЦ

«Кристаллография и фотоника»

РАН, Самарский национальный

исследовательский университет им.

академика С.П. Королева

Самара, Россия

alanko.ipsi@mail.ru

Для цилиндрического векторного пучка *n*-го порядка вектор Джонса электрического поля равен $E_n(\phi) = [\cos n\phi, \sin n\phi]$, где (r, ϕ) – полярные координаты. С помощью интегралов Дебая [6], можно получить все декартовы компоненты векторов напряженности электрического поля в остром фокусе:

$$E_{x}(r,\phi) = i^{n-1} \Big[\cos(n\phi)I_{0,n} + \cos((n-2)\phi)I_{2,n-2} \Big],$$

$$E_{y}(r,\phi) = i^{n-1} \Big[\sin(n\phi)I_{0,n} - \sin((n-2)\phi)I_{2,n-2} \Big], \quad (1)$$

$$E_{z}(r,\phi) = 2i^{n} \cos((n-1)\phi)I_{1,n-1}.$$

В уравнении (1) функции $I_{\nu,\mu}$ зависят только от радиальной и продольной координат r и z и равны

$$I_{\nu,\mu} = \left(\frac{4\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right)$$
(2)

$$\times \cos^{1/2}(\theta) A(\theta) e^{ikz \cos\theta} J_{\mu}(\xi) d\theta,$$

где $k = 2\pi/\lambda$ – волновое число монохроматического света с длиной волны λ , f – фокусное расстояние фокусирующей линзы, z – ось распространения (z = 0 – фокальная плоскость), $\xi = kr \sin \theta$, $A(\theta)$ – амплитуда входного поля с цилиндрической симметрией.

Усреднённая по времени продольная составляющая вектора СУМ равна $S_z = 2\text{Im}(E_x^*E_y)$. Если подставить в это выражение поле (1) и учесть комплексность интегралов (2) вблизи фокуса, получим:

$$S_{z} = \operatorname{Im} \left\{ I_{0,n} I_{2,n-2}^{*} \sin(n\varphi) \cos((n-2)\varphi) \right\} - \operatorname{Im} \left\{ I_{0,n}^{*} I_{2,n-2} \sin((n-2)\varphi) \cos(n\varphi) \right\},$$
(4)

Вблизи фокуса (kz << 1), СУМ примет вид:

IX Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2023) Секция 1. Компьютерная оптика и нанофотоника

$$S_z \square 2kz \sin(2(n-1)\varphi) (I_0 R_2 - I_2 R_0),$$
 (5)

где введены обозначения: $R_0 = I_{0,n}(z=0)$, $I_0 = \overline{I}_{0,n}$, $R_2 = I_{2,n-2}(z=0)$, $I_2 = \overline{I}_{2,n-2}$,

$$\overline{I}_{\nu,\mu} = \left(\frac{4\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \\
\times \cos^{3/2}\left(\theta\right) A(\theta) J_{\mu}(\xi) d\theta,$$
(6)

Как видно из (5), в самом фокусе (z = 0) $S_z = 0$ и потому в каждой точке поляризация линейна. Однако при малых расфокусировках ($kz \ll 1$) $S_z \neq 0$ И появляются области с эллиптической поляризацией, если $n \neq 1$. В областях, где до фокуса (z < 0) СУМ был отрицательным ($S_z < 0$), за фокусом (z > 0) он становится положительным ($S_z > 0$), и наоборот. Согласно (5), вблизи фокальной плоскости, на окружности определенного радиуса с центром на оси распространения, располагаются центры 4(n-1)локальных областей с эллиптической поляризацией. В соседних областях вектор поляризации вращается в противоположных направлениях. Так как при $n \neq 1$ вблизи фокуса цилиндрического векторного пучка появляются пространственно разделённые области с левой и правой круговой поляризацией (области с разным «спином»), можно заключить, что вблизи фокуса (до и после него) возникает спиновый эффект Холла, хотя в самой фокальной плоскости этот эффект исчезает.

3. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

Численное моделирование проводилось с помощью (1) и сравнивалось непосредственно с расчётом двойных интегралов Дебая. На рис. 1 показаны распределения интенсивности, радиальной составляющей вектора Пойнтинга, продольных составляющих векторов СУМ и остросфокусированного гауссова пучка ОУМ с цилиндрической поляризацией 3-го порядка (n = 3) в двух плоскостях - перед фокусом и за фокусом. Для расчёта использовались следующие параметры: длина волны $\lambda = 532$ нм, фокусное расстояние f = 10 мкм, числовая апертура $\theta_0 = 0,49\pi$ (NA = 0,999), расчётная область 4 × 4 мкм, продольная координата $z = -\lambda$ и $z = +\lambda$. Входное поле (гауссов пучок) задавалось в виде $A(\theta) = \exp[-(\sin \theta / \sin \alpha_0)^2] \ (\alpha_0 = \pi/3).$

Несмотря на визуальное сходство распределений СУМ и ОУМ (столбцы 3 и 4 на рис. 1), они вычислялись совершенно по-разному: распределение СУМ вычислялось по формуле (4), а распределение ОУМ рассчитано по следующей формуле:

$$L_{z} = \operatorname{Im}\left[E_{x}^{*}\left(\partial E_{x}/\partial \varphi\right) + E_{y}^{*}\left(\partial E_{y}/\partial \varphi\right) + E_{z}^{*}\left(\partial E_{y}/\partial \varphi\right)\right].$$
(7)

Тем не менее полученные картины подтверждают, что ОУМ L_z и СУМ S_z компенсируют друг друга и что после прохождения фокальной плоскости вращение вектора поляризации меняет свое направление (то есть продольная составляющая СУМ меняет знак).

Рис. 1 также подтверждает наличие вблизи фокуса 4(n-1) = 8 областей с разным направлением вращения вектора поляризации (4 тёмные области с левой эллиптической поляризацией и 4 светлые области с правой эллиптической поляризацией). Таким образом, моделирование подтверждает, что области с разным

«спином» вблизи фокуса пространственно разделены, то есть имеет место эффект Холла.

Рис. 1. Распределения интенсивности (столбец 1), радиальной составляющей вектора Пойнтинга (столбец 2), а также нормированных на максимум продольных составляющих векторов СУМ (столбец 3) и ОУМ (столбец 4) остросфокусированного гауссова пучка с цилиндрической поляризацией 3-го порядка перед фокусом (строка 1) и за фокусом (строка 2). На всех распределениях светлый и тёмный цвета означают соответственно максимум и минимум. Метки шкалы (в левом нижнем углу) обозначают 1 мкм

4. Заключение

В работе показано, что вблизи фокальной плоскости цилиндрического векторного пучка *n*-го порядка возникает 4(n-1) локальных области, расположенные на окружности, в которых вектор поляризации вращается в каждой точке, причём в соседних областях он вращается в разные стороны, так что продольная составляющая вектора СУМ меняет знак. Такое разделение левого и правого вращения векторов поляризации указывает на оптический спиновый эффект Холла. Это явление может быть использовано для определения порядка цилиндрического векторного пучка подсчётом областей с левой и правой круговой поляризацией вблизи фокуса.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке Российского научного фонда (грант 22-12-00137).

ЛИТЕРАТУРА

- Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Q. Zhan // Adv. Opt. Photon. – 2009. – Vol. 1. – P. 1– 57.
- [2] Youngworth, K.S. Focusing of high numerical aperture cylindricalvector beams / K.S. Youngworth, T.G. Brown // Opt. Express. – 2000. – Vol. 7. – P. 77–87.
- [3] Liu, J. Generation of arbitrary cylindrical vector vortex beams with cross-polarized modulation / J. Liu, X. Chen, Y. He, L. Lu, H. Ye, G. Chai, S. Chen, D. Fan // Results in Phys. – 2020. – Vol. 19. – P. 103455.
- [4] Stafeev, S.S. Tight focusing cylindrical vector beams with fractional order / S.S. Stafeev, A.G. Nalimov, V.D. Zaitsev, V.V. Kotlyar // J. Opt. Soc. Am. B. – 2021. – Vol. 38. – P. 1090–1096.
- [5] Kotlyar, V.V. Tightly focusing vector beams containing V-points polarization singularities / V.V. Kotlyar, A.A. Kovalev, S.S. Stafeev, A.G. Nalimov, S. Rasouli // J. Opt. Las. Techn. – 2022. – Vol. 145. – P. 107479.
- [6] Richards, B. Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System / B. Richards, E. Wolf // Proc. R. Soc. Lond. A. – 1959. – Vol. 253. – P. 358–379.