Исследование преобразований световых пучков при помощи волноводов

М.В. Забловская¹

¹Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086

Аннотация. В данной работе проводилось исследование преобразований пучков Гаусса-Лагерра, а также пучков Гаусса при помощи волноводов. Проведено исследование влияния типа волновода на степень искажения пучка.

1. Введение

Модовые световые пучки, сохраняющие поперечное распределение поля при распространении, привлекают повышенный интерес многих исследователей [1-3], т.к. благодаря своим свойствам такие пучки имеют широкий спектр применений [4, 5]. Свойство самовоспроизведения тесно связано со свойством инвариантности (сохранения, неизменяемости), которое является относительным и определяется по отношению к некоторому воздействию. В упомянутых выше работах рассматривалась инвариантность световых пучков (с точностью до масштаба) к оператору распространения в свободном пространстве, прохождению через линзовые системы, усечению диафрагмой и повороту. Также рассматривались свойства периодического самовоспроизведения (повторения с точностью до масштаба) светового поля на определенных расстояниях при распространении в однородной среде. К полям с продольно-периодическими свойствами также относятся "вихревые" световые пучки, которые объединяют в себе свойства инвариантности к распространению (структура поперечного сечения сохраняется с точностью до поворота) и периодичности (повторение происходит через расстояние, за которое совершится полный оборот).

Инвариантность к оператору распространения или преобразованию Френеля демонстрирует световые моды в различных оптических средах: Бесселевы моды - в свободном пространстве, моды Гаусса-Лагерра и Гаусса-Эрмита - в оптической среде с параболическим показателем преломления. Гауссовы моды также можно считать модами свободного пространства с точностью до масштаба. Заметим, что свойством инвариантности к оператору распространения обладает каждая мода в отдельности. Произвольная композиция световых мод, в общем случае, таким свойством не обладает. В работах [6-8] получены условия, позволяющие формировать суперпозиции световых мод с инвариантными свойствами.

Гауссовы моды также обладают инвариантностью к прохождению через линзовые системы. Известен ряд функций, инвариантных к преобразованию Фурье в бесконечных пределах. Например, в [9, 10] рассматривается способ синтеза объектов, инвариантных к преобразованию Фурье путем композиции исходной функций и ее Фурье-образа. Однако, при введении диафрагмы свойство Фурье-инвариантности таких объектов нарушается. Более удобными для диафрагмирования являются функции Гаусса-Эрмита и Гаусса-Лагерра, энергия которых как в

объектной, так и частотной плоскостях сконцентрирована на ограниченном отрезке. Хотя, строго говоря, эти функции инвариантны к преобразованию Фурье в бесконечных пределах. Собственными функциями ограниченных операторов распространения являются вытянутые сфероидальные волновые функции [11] и их обобщения [12, 13]. Суперпозиция собственных функций, аппроксимирующая некоторое световое распределение, будет обладать модовым характером при прохождении через оптические линзовые системы с ограниченной апертурой. Т. е., изображение будет устойчиво к дифракционным эффектам, связанным с ограниченными размерами апертуры оптической системы [10].

2. Исследование поляризационных преобразований

В работе [14] рассматривалось усовершенствование метода согласованных синусоидальных мод, основанное на применении формы записи характеристического уравнения. Метод реализован для мод волноводов.

В работе [15] предложена и численно исследована новая структура оптических резонаторов в пересечении гребенчатых фотоннокристаллических волноводов. Исследованы свойства симметрии возбуждаемых резонансных мод ТЕ-поляризации. Установлено, что резонансная мода обладает одной осью симметрии в цилиндрическом резонаторе и двумя осями симметрии в кольцевом резонаторе. Показано, что резонансная мода с двумя осями симметрии позволяет реализовать эффективный оптический резонатор В пересечении гребенчатых фотоннокристаллических волноводов. Исследованы способы оптимизации предложенных резонаторов. Во-первых, рассмотрена оптимизация с помощью введения дополнительной щели в область резонатора. Во-вторых, исследованы возможности нелинейных материалов с различным индексом рефракции. Рассчитанные резонаторы имеют добротность около 104 и малый модовый объём.

Одним из способов оптимизации формы резонансной моды является введение дополнительной переходной области между зоной резонатора и зоной фотонного кристалла. Оптимизация формы резонансной моды позволяет также усилить электрическое поле в заданных областях резонатора. Например, использование щелевого резонатора даёт возможность усилить электрическое поле в щели резонатора.

В работе [16] разработан математический аппарат для описания распространения волн в металлическом волноводе в цилиндрической системе координат. Показано преобразование конической волны с круговой поляризацией в вихревой цилиндрически поляризованный пучок на основе разложения поля по векторным цилиндрическим модам.

Гауссовы функции являются модами оптического волокна с квадратичной зависимостью показателя преломления. Однако, гауссовы моды сохраняют свою структуру и в свободном пространстве, изменяясь лишь масштабно. Многомодовые гауссовы пучки могут обладать свойствами самовоспроизведения [17].

Пучок Гаусса-Лагерра задается по формуле:

$$S_{nm}(r,\theta) = \frac{2\sqrt{\pi(n-m)!}}{a\sqrt{(n!)^3}} \left(\frac{r}{a}\right)^m \times \exp\left[-\frac{\left(\frac{r}{a}\right)^2}{2}\right] L_n^m\left(\left(\frac{r}{a}\right)^2\right) \exp[\pm im\theta],$$

2

где $L_n^m(x) = (-1)^m \frac{d^m}{dx^m} [L_{m+n}(x)]$ – обобщенный многочлен Лагранжа, $r^2 = x^2 + y^2$, $\theta = \arctan \frac{y}{r}$.

Общая функция Гаусса задается следующим образом:

$$S_{nm}(r,\theta) = \frac{1}{\delta\sqrt{2\pi}} \times \exp\left[\frac{(x-\mu)^2}{2\delta^2}\right]$$

Рассмотрим влияние формы волновода на выходной Гауссов пучок. В таблице 1 представлены результаты моделирования прохождения пучка Гаусса в зависимости от формы волновода и его показателя преломления. В таблице 2 представлены результаты моделирования прохождения пучка Гаусса в зависимости от длины сегмента волновода.

Таблица 1. Преобразование мод в зависимости от степени показателя преломления.

Проведем моделирование прохождения Гауссова пучка через волновод, изменяя толщину волновода (таблица 3).

3. Заключение

Была выявлена зависимость преобразований гауссовых мод от параметров волновода. Наблюдается прямо пропорциональная зависимость между толщиной волновода и степенью искажения выходного пучка. Результаты моделирования показали пропорциональную зависимость между длиной сегмента волновода и степенью искажения светового пучка.

4. Благодарности

Данная работа была выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-07-00505 А).

Таблица 3. Влияние толщины волновода на преобразование гауссовых мод.

5. Литература

- Overfelt, P.L. Comparison of the propagation characteristics of Bessel, Bessel-Gauss, and Gaussian beams diffracted by a circular aperture / P.L. Overfelt, C.S. Kenney // J. Opt. Soc. Am. A. – 1991. – Vol. 8(5). – P. 732-744.
- [2] Padgett, M. An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes / M. Padgett, J. Arlt, N. Simpson, L. Allen // Am. J. Phys. – 1996. – Vol. 64(1). – P. 77-82.
- [3] Котляр, В.В. Алгоритм расчета ДОЭ для генерации вращающихся модальных изображений / В.В. Котляр, В.А. Сойфер, С.Н. Хонина // Автометрия. – 1997. – № 5. – С. 46-54.
- [4] Котляр, В.В. Вращение световых многомодовых пучков Гаусса-Лагерра в свободном пространстве / В.В. Котляр, В.А. Сойфер, С.Н. Хонина // Письма в ЖТФ. – 1997. – Т. 23, № 17. – С. 1-6.
- [5] Хонина, С.Н. Формирование и передача на расстояние изображений с помощью мод Гаусса-Лагерра // Компьютерная оптика. 1998. Т. 18. С. 71-82.
- [6] Хонина, С.Н. Дифракционные оптические элементы, согласованные с модами Гаусса-Лагерра / С.Н. Хонина, В.В. Котляр, В.А. Сойфер // Оптика и спектроскопия. – 1998. – Т. 85, № 4. – С.695-703.
- [7] Хонина, С.Н. Формирование мод Гаусса-Эрмита с помощью бинарных ДОЭ. II. Оптимизация апертурной функции // Компьютерная оптика. – 1998. – Т. 18. – С. 28-36.

- [8] Khonina, S.N. Diffraction optical elements matched to the Gauss-Laguerre modes / S.N. Khonina, V.V. Kotlyar, V.A. Soifer // Optics and Spectroscopy. 1998. Vol. 85(4). P. 636-644.
- [9] Piestun, R. Propagation-invariant wave fields with finite energy / R. Piestun, Y.V. Schechner, J. Shamir // J. Opt. Soc. Am. A. 2000. Vol. 17(2). P. 294-303.
- [10] Khonina, S.N. Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element / S.N. Khonina, V.V. Kotlyar, R.V. Skidanov, V.A. Soifer, P. Laakkonen, J. Turunen // Optics Comm. – 2000. – Vol. 175. – P. 301-308.
- [11] Patorski, K. The self-imaging phenomenon and its applications // Progress in optics. 1989. Vol. 27.
- [12] Кириленко, М.С. Расчёт собственных функций изображающей двухлинзовой системы в условиях осевой симметрии / М.С. Кириленко, С.Н. Хонина // Компьютерная оптика. 2014. Т. 38, № 3. С. 412-417.
- [13] Кириленко, М.С. Вычисление собственных функций ограниченного дробного преобразования Фурье / М.С. Кириленко, Р.О. Зубцов, С.Н. Хонина // Компьютерная оптика. 2015. Т. 39, № 3. С. 332-338. DOI: 10.18287/0134-2452-2015-39-3-332-338.
- [14] Котляр, В.В. Расчет пространственных мод оптических волноводов с неоднородным поперечным сечением методом согласованных синусоидальных мод / В.В. Котляр, Я.О. Шуюпова // Компьютерная оптика. 2003. Т. 25. С. 41-48.
- [15] Казанский, Н.Л. Оптический нанорезонатор в пересечении гребенчатых фотоннокристаллических волноводов / Н.Л. Казанский, П.Г. Серафимович, С.Н. Хонина // Компьютерная оптика. 2011. Т. 35, № 4. С. 426-431.
- [16] Харитонов, С.И. Преобразование конической волны с круговой поляризацией в вихревой цилиндрически поляризованный пучок в металлическом волноводе / С.И. Харитонов, С.Н. Хонина // Компьютерная оптика. – 2018. – Т. 42, № 2. – С. 197-211. DOI: 10.18287/ 2412-6179-2018-42-2-197-211.
- [17] Хонина, С.Н. Экспериментальное формирование и селекция мод Гаусса-Эрмита с помощью ДОЭ // Компьютерная оптика. 2002. Т. 23. С. 15-22.

Transformation of light beams using waveguides

M.V. Zablovskaia¹

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086

Abstract. In this paper, we studied the transformations of Gauss-Laguerre beams, as well as Gauss beams using waveguides. The influence of the waveguide type on the degree of beam distortion was studied.