Исследование фокусировки цилиндрическиполяризованных пучков дифракционным аксиконом с использованием высокопроизводительных компьютерных систем

Д.А. Савельев^{1,2}

¹Самарский национальный исследовательский университет им. академика С.П.
 Королева, Московское шоссе 34А, Самара, Россия, 443086
 ²Институт систем обработки изображений РАН - филиал ФНИЦ «Кристаллография и фотоника» РАН, Молодогвардейская 151, Самара, Россия, 443001

Аннотация. В работе проведено исследование влияния острой фокусировки на пространственное распределение компонент электрического поля гауссовых пучков с цилиндрической поляризацией первого порядка (радиальной, азимутальной и гибридной). Фокусировка цилиндрически-поляризованных пучков производилась высокоапертурным дифракционным аксиконом. Численное моделирование дифракции рассматриваемых пучков проводилось методом конечных разностей во временной области (FDTD) с использованием высокопроизводительных компьютерных систем.

1. Введение

Световые пучки с фазовыми и поляризационными особенностями востребованы во многих приложениях [1-10], включая микроскопию, литографию, нелинейную оптику, обработку материалов, телекоммуникации. Взаимосвязь между фазовой сингулярностью скалярного поля и различными поляризационными сингулярностями векторных полей [11-16] в угловом моменте фотонов была обнаружена достаточно давно [17] и в настоящее время успешно используется при оптическом манипулировании микро- и наночастицами [18-20], а также при уплотнении каналов оптической связи [21, 22].

Цилиндрически-поляризованные пучки [2], особенно пучки с радиальной и азимутальной поляризацией, в силу своих особых свойств все больше привлекают внимание исследователей. В связи с этим растет число публикаций, посвященных различным способам формирования таких пучков [23-27].

Особенности острой фокусировки гауссовых пучков и пучков Гаусса-Лагерра в зависимости от состояния однородной (линейной и круговой) поляризации были изучены в [28-31], где было показано, что состояние поляризации оказывает наибольшее влияние на продольную составляющую светового поля. В работах [32-35] продемонстрирована эффективность применения дифракционных оптических элементов с высокой числовой апертурой.

Хорошо известно, что оптический элемент, называемый аксиконом, формирует бесселевый пучок нулевого порядка на 37% меньше линзы с той же числовой апертурой (NA). Диаметр

центрального пятна, которого по полуспаду интенсивности (FWHM) равен 0,36 длины волны, деленную на числовую апертуру [36].

В данной работе проведены численные исследования фокусировки дифракционным аксиконом гауссовых пучков в ближней зоне при азимутальной, радиальной и разных вариантах гибридных поляризациях. Моделирование дифракции выполнялось при использовании метода конечных разностей во временной области (FDTD) с использованием высокопроизводительных компьютерных систем [37-40]. Расчеты проводились на вычислительном кластере мощностью 850 ГФлоп.

2. Цилиндрически-поляризованные лазерные пучки

Декартовы компоненты электрической составляющей монохроматического электромагнитного поля в фокальной области при фокусировке аксиконом можно представить в следующем виде [32]:

$$\mathbf{E}(\rho,\theta,z) = \begin{pmatrix} E_x(\rho,\theta,z) \\ E_y(\rho,\theta,z) \\ E_z(\rho,\theta,z) \end{pmatrix} =$$

$$= i^{2m} \exp(im\theta) \int_{\sigma_1}^{\sigma_2} \mathbf{Q}_m(k\sigma\rho,\theta) \left[\int_{0}^{R} \tau(r) \begin{pmatrix} E_{0x}(r) \\ E_{0y}(r) \end{pmatrix} J_m(kr\sigma) r \, dr \right] \exp\left[ikz\sqrt{1-\sigma^2}\right] \sigma \, d\sigma$$

$$(1)$$

где (ρ , θ , z) – цилиндрические координаты в фокальной области, $k = 2\pi/\lambda$ – волновое число, λ – длина волны, f – фокусное расстояние, R – радиус аксикона, $\mathbf{Q}_m(k\sigma\rho,\theta)$ - вектор, компоненты которого являются комбинацией функций Бесселя [32-34], а вид комбинаций зависит от поляризации падающего излучения.

В работах [41-45] рассмотрены различные типы цилиндрических поляризаций высокого порядка, которые можно объединить формулой:

$$\mathbf{C}(\phi) = \begin{pmatrix} \cos\left(p\phi + \phi_0\right) \\ \sin\left(p\phi + \phi_0\right) \end{pmatrix}.$$
 (2)

Используя формулу (2) можно получить различные частные случаи – радиальную поляризацию при $\phi_0 = 0$, p > 0 (3), азимутальную поляризацию при $\phi_0 = \pi/2$, p > 0 (4), квазирадиальную поляризацию при $\phi_0 = 0$, p < 0 (5), квази-азимутальную поляризацию при $\phi_0 = \pi/2$, p < 0 (6):

$$\mathbf{C}_{Rad}(\phi) = \begin{pmatrix} \cos(p\phi) \\ \sin(p\phi) \end{pmatrix}, \qquad (3)$$

$$\mathbf{C}_{Az}(\phi) = \begin{pmatrix} -\sin(p\phi) \\ \cos(p\phi) \end{pmatrix}$$
(4)

$$\mathbf{C}_{qRad}(\mathbf{\phi}) = \begin{pmatrix} \cos(p\mathbf{\phi}) \\ -\sin(p\mathbf{\phi}) \end{pmatrix}$$
(5)

$$\mathbf{C}_{qAz}(\phi) = \begin{pmatrix} \sin(p\phi) \\ \cos(p\phi) \end{pmatrix}$$
(6)

3. Фокусировка цилиндрически-поляризованных пучков дифракционным аксиконом

В данном разделе исследуется фокусировка цилиндрически-поляризованных пучков первого порядка (*p*=1) дифракционным аксиконом. В качестве падающего пучка рассматривался

Секция: Компьютерная оптика и нанофотоника Исследование фокусировки цилиндрически-поляризованных пучков дифракционным аксиконом с использованием высокопроизводительных компьютерных систем

Гауссов пучков с соответствующей поляризаций (3)-(6). В частности, при радиальной поляризации:

$$G_{Rad}(r,\phi) = r \exp\left(-\frac{r^2}{2\sigma^2}\right) \left(\frac{\cos(\phi)}{\sin(\phi)}\right) = \exp\left(-\frac{r^2}{2\sigma^2}\right) \left(\frac{x}{y}\right),\tag{7}$$

где о - радиус Гауссова пучка.

Параметры моделирования: длина волны $\lambda = 0.532$ мкм, размер вычислительной ячейки x, y, z $\in [-3,8\lambda; 3,8\lambda]$. Толщина поглощающего слоя PML ~ 1.3 λ , шаг выборки по пространству – $\lambda/21$, шаг по времени – $\lambda/(42c)$, где с скорость света. В качестве входного лазерного излучения рассматривались цилиндрически-поляризованные гауссовые пучки. Показатель преломления дифракционного аксикона и подложки n был равен 1.5. Числовая апертура (NA) фокусирующего дифракционного аксикона составила 0.95. Вид элемента показан на рисунке 1.

Рисунок 1. Рассматриваемый оптический элемент и сечения распространения в плоскости хz для аксиконов с NA = 0.95.

Результаты численного моделирования в плоскости xz, а также внешний вид пучков показан в таблице 1. Для радиальной поляризации значение полуширины по полуспаду интенсивности (FWHM) для общей интенсивности электрического поля вне элемента составило FWHM = 0.55λ , для интенсивности компоненты z электрического поля FWHM = 0.53λ . Глобальный максимум находится внутри оптического элемента и его значение для общей интенсивности и интенсивности и интенсивности компоненты z электрического поля FWHM = 0.38λ .

В дальнейшем было проведено моделирование для более сложного типа поляризации, который также является неоднородной локально-линейной поляризацией:

$$\tilde{G}_{rad}(r,\phi) = \exp\left(-\frac{r^2}{2\sigma^2}\right) \begin{pmatrix} x^2 \\ y^2 \end{pmatrix}$$
(8)

$$\tilde{G}_{az}(r,\phi) = \exp\left(-\frac{r^2}{2\sigma^2}\right) \begin{pmatrix} -y^2 \\ x^2 \end{pmatrix}$$
(9)

$$\tilde{G}_{rad}(r,\phi) = \exp\left(-\frac{r^2}{2\sigma^2}\right) \begin{pmatrix} x^2 \\ -y^2 \end{pmatrix}$$
(10)

$$\tilde{G}_{az}(r,\phi) = \exp\left(-\frac{r^2}{2\sigma^2}\right) \begin{pmatrix} y^2 \\ x^2 \end{pmatrix}$$
(11)

Исследование фокусировки цилиндрически-поляризованных пучков дифракционным аксиконом с использованием высокопроизводительных компьютерных систем

Таблица 1. Результат численного моделирования фокусировки цилиндрическиполяризованных пучков дифракционным аксиконом, плоскость хz.

Таблица 2. Результат численного моделирования фокусировки гауссовых пучков при неоднородной локально-линейной поляризацией дифракционным аксиконом, плоскость хz.

Секция: Компьютерная оптика и нанофотоника Исследование фокусировки цилиндрически-поляризованных пучков дифракционным аксиконом с использованием высокопроизводительных компьютерных систем

Так как ни один из типов поляризации (8)-(11) не является классической азимутальной поляризацией, то при острой фокусировке должна появиться компонента z электрического поля [32]. И данный факт подтверждается исследованиями, приведенными в таблице 2.

При анализе результатов, приведенных в таблицах 1-2 стоит отметить, что для радиальной поляризации первый максимум образуется внутри оптического элемента, второй максимум вне его, но фокальное пятно в этом случае шире (FWHM = 0.55λ и FWHM = 0.69λ , соответственно). При неоднородной локально-линейной поляризацией радиального типа формируемый основной максимум находится вне оптического элемента. Также отметим, что для всех рассмотренных неоднородно локально-линейных поляризаций происходит формирование фокального пятна на оптической оси в отличие от стандартной азимутальной, квази-радильной, квази-азимутальной поляризаций. Также для этого типа поляризации стоит отметить усиление компоненты z электрического поля.

4. Заключение

В данной работе численно с помощью метода FDTD выполнено сравнительное моделирование дифракции цилиндрически-поляризованных пучков на высоко-апертурном дифракционном аксиконе. Проведено исследование влияния изменения типа поляризации (радиальной, азимутальной, квази-радильной, квази-азимутальной и неоднородной локально-линейной поляризацией) на пространственное распределение гауссовых пучков.

Показано, что при рассмотренной неоднородной локально-линейной поляризации радиального и азимутального типа можно добиться смещения основного максимума за пределы оптического элемента. Для неоднородной локально-линейной поляризации радиального типа фокальное пятно шире (FWHM = 0.69λ), чем для радиальной поляризации (FWHM = 0.55λ). Для неоднородной локально-линейной поляризации азимутального типа происходит формирование фокального пятна на оптической оси в отличие от стандартной азимутальной поляризации. Также для этого типа поляризации стоит отметить усиление продольной компоненты электрического поля.

5. Благодарности

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-29-20045 мк), Министерства науки и высшего образования Российской Федерации (государственное задание 3.3025.2017/4.6, грант Президента Российской Федерации МК-1797.2019.2, ведущая научная школа НШ-6307.2018.8), а также в рамках выполнения работ по Государственному заданию ФНИЦ «Кристаллография и фотоника» РАН (соглашение №007-ГЗ/ЧЗ363/26).

6. Литература

- [1] Dennis, M.R. Singular Optics: Optical Vortices and Polarization Singularities / M.R. Dennis, K. O'Holleran, M.J. Padgett // Progress in Optics, Elsevier. 2009. Vol. 53. P. 293-363.
- [2] Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications // Advances in Optics and Photonics. 2009. Vol. 1(1). P. 1-57.
- [3] Khonina, S.N. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy / S.N. Khonina, I. Golub // JOSA A. – 2012. – Vol. 29(10). – P. 2242-2246.
- [4] Kraus, M. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization / M. Kraus, M.A. Ahmed, A. Michalowski, A. Voss, R. Weber, T. Graf // Optics Express. – 2010. – Vol. 18(21). – P. 22305.
- [5] Hnatovsky, C. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses / C. Hnatovsky, V.G. Shvedov, N. Shostka, A.V. Rode, W. Krolikowski // Optics Letters. – 2012. – Vol. 37(2). – P. 226-228.
- [6] Varin, C. Direct electron acceleration with radially polarized laser beams / C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, M. Piché // Appl. Sci. – 2013. – Vol. 3(1). – P. 70-93.

Исследование фокусировки цилиндрически-поляризованных пучков дифракционным аксиконом с использованием высокопроизводительных компьютерных систем

- [7] Ehmke, T. Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized light / T. Ehmke, T.H. Nitzsche, A. Knebl, A. Heisterkamp // Biomed. Opt. Express. – 2014. – Vol. 5(7). – P. 2231-2246.
- [8] Milione, G. Using the nonseparability of vector beams to encode information for optical communication / G. Milione, T.A. Nguyen, J. Leach, D.A. Nolan, R.R. Alfano // Opt. Lett. – 2015. – Vol. 40(21). – P. 4887-4890.
- [9] Khonina, S.N. Inverse energy flux of focused radially polarized optical beams / S.N. Khonina, A.V. Ustinov, S.A. Degtyarev // Physical Review A. 2018. Vol. 98. P. 043823.
- [10] Degtyarev, S.A. Metasurfaces with continuous ridges for inverse energy flux generation / S.A. Degtyarev, D.A. Savelyev, S.N. Khonina, N.L. Kazanskiy // Optics Express. 2019. Vol. 27(11). P. 15129-15135.
- [11] Soskin, M.S. Singular optics / M.S. Soskin, M.V. Vasnetsov // Progress in Optics, Elsevier. 2001. – Vol. 42. – P. 219-276.
- [12] Freund, I. Stokes singularity relations / I. Freund, A.I. Mokhun, M.S. Soskin, O.V. Angelsky, I.I. Mokhun // Optics letters. – 2002. – Vol. 27(7). – P. 545-547.
- [13] Berry, M.V. Polarization singularities in isotropic random vector waves / M.V. Berry, M.R. Dennis // Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2001. Vol. 457(2005). P. 141-155.
- [14] Khonina, S.N. Analysis of polarisation states at sharp focusing / S.N. Khonina, D.A. Savelyev, N.L. Kazanskiy // Optik-International Journal for Light and Electron Optics. – 2016. – Vol. 127(6). – P. 3372-3378.
- [15] Porfirev, A.P. Polarization conversion when focusing cylindrically polarized vortex beams / A.P. Porfirev, A.V. Ustinov, S.N. Khonina // Scientific Reports. – 2016. – Vol. 6(6). – P. 1-9.
- [16] Khonina, S.N. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals / S.N. Khonina, S.V. Karpeev, V.D. Paranin, A.A. Morozov // Physics Letters A. – 2017. – Vol. 381. – P. 2444-2455.
- [17] Beth, R.A. Mechanical detection and measurement of the angular momentum of light // Physical Review. – 1936. – Vol. 50(2). – P. 115.
- [18] Simpson, N.B. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner / N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett // Optics letters. – 1997. – Vol. 22(1). – P. 52-54.
- [19] Padgett, M. Tweezers with a twist / M. Padgett, R. Bowman // Nat. photonics. 2011. Vol. 5. – P. 343.
- [20] Shi, P. Structured spin angular momentum in highly focused cylindrical vector vortex beams for optical manipulation / P. Shi, L. Du, X. Yuan // Opt. Express. – 2018. – Vol. 26. – P. 23449-23459.
- [21] Huang, H. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength / H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M.J. Willner, B.I. Erkmen, K.M. Birnbaum, S.J. Dolinar, M.P.J. Lavery, M.J. Padgett, M.Tur, A.E. Willner // Opt. Lett. – 2014. – Vol. 39(2). – P. 197-200.
- [22] Khonina, S.N. Recognition of polarization and phase states of light based on the interaction of nonuniformly polarized laser beams with singular phase structures / S.N. Khonina, A.P. Porfirev, S.V. Karpeev // Optics Express. – 2019. – Vol. 27(13). – P. 18484-18492.
- [23] Bomzon, Z. Radially and azimuthally polarized beams generated by space variant dielectric subwavelength gratings /Z. Bomzon, G. Biener, V. Kleiner, E. Hasman // Opt. Lett. – 2002. – Vol. 27. – P. 285-287.
- [24] Fadeyeva, T. Natural shaping of the cylindrically polarized beams / T. Fadeyeva, V. Shvedov, N. Shostka, C. Alexeyev, A. Volyar // Opt. Lett. – 2010. – Vol. 35. – P. 3787-3789.
- [25] Khonina, S.N. Generation of cylindrical vector beams of high orders using uniaxial crystals / S.N. Khonina, S.V. Karpeev, S.V. Alferov, V.A. Soifer // Journal of Optics. – 2015. – Vol. 17. – P. 065001-11.
- [26] Fu, S. Anisotropic polarization modulation for the production of arbitrary poincaré beams / S. Fu, C. Gao, T. Wang, Y. Zhai, C. Yin // J. Opt. Soc. Am. B. – 2018. – Vol. 35. – P. 1-7.

Исследование фокусировки цилиндрически-поляризованных пучков дифракционным аксиконом с использованием высокопроизводительных компьютерных систем

- [27] Khonina, S.N. Formation of hybrid higher-order cylindrical vector beams using binary multisector phase plates / S.N. Khonina, A.V. Ustinov, S.A. Fomchenkov, A.P. Porfirev // Scientific Reports. – 2018. – Vol. 8. – P. 14320.
- [28] Савельев, Д.А. Максимизация продольной электрической компоненты при дифракции на бинарном аксиконе линейно-поляризованного излучения / Д.А. Савельев, С.Н. Хонина // Компьютерная оптика. 2012. Т. 36, № 4. С. 511-517.
- [29] Khonina, S.N. Simple phase optical elements for narrowing of a focal spot in high-numericalaperture conditions // Optical Engineering. – 2013. – Vol. 52(9). – P. 091711-7.
- [30] Савельев, Д.А. Особенности острой фокусировки вихревых пучков Гаусса–Лагерра / Д.А. Савельев, С.Н. Хонина //Компьютерная оптика. 2015. Т. 39, № 5. С. 654-662.
- [31] Khonina, S.N. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams / S.N. Khonina, S.V. Alferov, S.V. Karpeev // Optics Letters. - 2013. - Vol. 38(17). - P. 3223-3226.
- [32] Хонина, С.Н. Высокоапертурные бинарные аксиконы для формирования продольной компоненты электрического поля на оптической оси при линейной и круговой поляризации освещающего пучка / С.Н. Хонина, Д.А. Савельев // Журнал Экспериментальной и Теоретической Физики. – 2013. – Т. 144, № 4(10). – С. 718-726.
- [33] Khonina, S.N. Diffraction at binary microaxicons in the near field / S.N. Khonina, P.G. Serafimovich, D.A. Savelyev, I. Pustovoi // Journal of Optical Technology. 2012. Vol. 79(10). P. 626-631.
- [34] Хонина, С.Н. Экспериментальная демонстрация формирования продольной компоненты электрического поля на оптической оси с помощью высокоапертурных бинарных аксиконов при линейной и круговой поляризации освещающего пучка / С.Н. Хонина, С.В. Карпеев, С.В. Алферов, Д.А. Савельев // Компьютерная оптика. – 2013. – Т. 37, № 1. – С. 76-87.
- [35] Khonina, S.N. 3D transformations of light fields in the focal region implemented by diffractive axicons / S.N. Khonina, A.P. Porfirev // Applied Physics B. 2018. Vol. 124. P. 191-193.
- [36] Kalosha, V.P. Toward the subdiffraction focusing limit of optical superresolution / V.P. Kalosha, I. Golub // Optics letters. 2007. Vol. 32(24). P. 3540-3542.
- [37] Savelyev, D.A. The calculation of the diffraction of the laser beams with a phase singularity on the micro-axicons with using high-performance computing / D.A. Savelyev, S.N. Khonina // Journal of Physics: Conference Series. 2014. Vol. 490(1) P. 012213.
- [38] Khonina, S.N. A longitudinally polarized beam generated by a binary axicon / S.N. Khonina, S.A. Degtyarev // Journal of Russian Laser Research. 2015. Vol. 36(2). P. 151-161.
- [39] Khonina, S. Optimization of the Optical Microelements Using High-Performance Computer Systems / S. Khonina, D. Savelyev // Radiophysics & Quantum Electronics. – 2015. – Vol. 57(8-9). – P. 650-658.
- [40] Savelyev, D.A. Simulation of pulses propagation in a waveguide with a diffraction grating using high-performance computer systems / D.A. Savelyev, S.V. Krasnov // Optical Technologies for Telecommunications. – International Society for Optics and Photonics. – 2019. – Vol. 11146. – P. 1114609.
- [41] Stalder, M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters / M. Stalder, M. Schadt // Optics Letters. – 1996. – Vol. 21(23). – P. 1948-1950.
- [42] Rashid, M. Focusing of high order cylindrical vector beams / M. Rashid, O.M. Maragò, P.H. Jones // Journal of Optics A: Pure and Applied Optics. 2009. Vol 11(6). P. 065204.
- [43] Pu, J. Tight focusing of spirally polarized vortex beams / J. Pu, Z. Zhang // Optics & Laser Technology. – 2010. – Vol. 42(1). – P. 186-191.
- [44] Zhe-Hai, Z. Tight focusing of axially symmetric polarized vortex beams / Z. Zhe-Hai, G. Yang-Kuan, Z. Lian-Qing // Chinese Physics B. – 2014. – Vol. 23(4). – P. 044201.
- [45] Khonina, S.N. Vortex beams with high-order cylindrical polarization: features of focal distributions // Applied Physics B. – 2019. – Vol. 125(6). – P. 100.

Investigation of the cylindrically polarized beams focusing by a diffractive axicon using high-performance computer systems

D.A. Savelyev^{1,2}

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086 ²Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardejskaya street 151, Samara, Russia, 443001

Abstract. The study of the influence of tight focusing on the spatial distribution of the electric field components of Gaussian beams with first-order cylindrical polarization (radial, azimuthal, and hybrid) is carried out. The cylindrical-polarized beams were focused by a high-aperture diffraction axicon. Numerical simulation of the diffraction of the beams under consideration was carried out using the finite difference time domain method (FDTD) using high-performance computer systems.