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Abstract. The hyperfine structure of energy levels of muonic molecules tdµ, tpµ and
dpµ is calculated on the basis of stochastic variational method. The basis wave
functions are taken in the Gaussian form. The matrix elements of the Hamiltonian are
calculated analytically. For numerical calculation, a computer code is written in the
MATLAB system. Numerical values of energy levels of hyperfine structure in muonic
molecules tdµ, tpµ and dpµ are obtained.

1. Introduction
The study of the energy spectra of hydrogen muonic molecules is important for muonic catalysis
of nuclear fusion reactions [1]. Precise calculation of fine and hyperfine structure of muonic
molecular ions with the inclusion of higher order QED corrections allows us to predict the
rates of reactions of their formation and other parameters of the µCF cycle. In our work we
investigate hyperfine structure of S-states with L = 0. Muonic molecules tdµ, tpµ and dpµ
consist of various isotopes of hydrogen with different spins which results in different number of
hyperfine structure levels. In tpµ all spins are equal to 1/2 and it has 3 hyperfine energy levels.
In tdµ and dpµ deuteron has spin 1 which gives 4 hyperfine energy levels in the ground state of
these mesomolecular ions. There are several different approaches to the classification of bound
states in mesomolecular ions. One of them originates from adiabatic approach and involves a
pair of quantum numbers J and ν, where J is rotational quantum number and ν is vibrational
quantum number [2, 3]. Ground state in this approach is designated as (0,0).

2. General formalism
To calculate the bound state energies and their hyperfine structure in muonic molecules tdµ, tpµ
and dpµ we use stochastic variational method [4]. The trial wave function of muonic molecule in
this approach has the Gaussian form. The Gaussian-type basis function with non-zero angular
momentum for nonidentical particles is the following:

φLS(x, A) = e−
1
2
x̃AxθL(x), θL(x) = [[[Yl1(x1)Yl2(x2)]L12Yl3(x3)]L123 ...]LM , (1)

where x = (x1, ...,xN−1) are the Jacobi coordinates, A is a (N − 1)× (N − 1) positive-defined
matrix of variational parameters, Ylm(x) = rlYlm(x). In the case of three nonidentical particles
in S-state (L = 0, where L is total angular momentum of particles) basis functions take the
form:

φ00(ρ,λ, A) = e−
1
2
[A11ρ2+A22λ2+2A12(ρλ)], (2)
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where ρ and λ denote two Jacobi coordinates. Knowing the basis functions we can now perform
analytical calculation of matrix elements of the Hamiltonian, which is an advantage of the
Gaussian basis. The overlap matrix element has the form:

< φ′|φ >00=
8π3

(detB)3/2
. (3)

where the matrix elements of matrix B are expressed in terms of matrix A: Bij = A′ij +Aij . For
the calculation of matrix elements of the Hamiltonian we use explicit expressions for potential
and kinetic energy operators. In nonrelativistic approximation the Hamiltonian of the molecule
without the account of hyperfine structure has the following form in Jacobi coordinates:

Ĥ = − ~2

2µ1
∆ρ −

~2

2µ2
∆λ +

e1e2
|ρ|

+
e1e3

|λ+ m2
m12
ρ|

+
e2e3

|λ− m1
m12
ρ|
, (4)

where µ1 = m1m2
m1+m2

, µ2 = (m1+m2)m3

m1+m2+m3
, r12 = r1 − r2 = ρ, r13 = r1 − r3 = λ + m2

m12
ρ,

r23 = r2 − r3 = λ− m1
m12
ρ, e1, e2, e3 are charges of particles. Matrix elements of kinetic energy

have the following analytical form:

< φ′|T̂ |φ >00= − 24π3

(detB)5/2

{
~2

2µ1
I00ρ +

~2

2µ2
I00λ

}
, (5)

I00ρ = A2
12B11 − 2A11A12B12 +A11(B

2
12 + (A11 −B11)B22), (6)

I00λ = A2
12B22 − 2A22A12B12 +A22(B

2
12 + (A22 −B22)B11). (7)

For potential energy matrix elements we have:

< φ′|V̂ |φ >00= e1e2I
00
12 + e1e3I

00
13 + e2e3I

00
23 . (8)

I0012 =
8
√

2π5/2√
B22 detB

. (9)

To obtain I0013,23 one has to introduce a new variable k13,23 = λ± m13,23
2
m12

ρ.

I0013,23 =
8
√

2π5/2√
F 13,23
1 (B22F

13,23
1 − (F 13,23

2 )2)
, (10)

F 13,23
1 = B11 +B22

(m13,23
2,1 )2

m2
12

∓ 2B12

m13,23
2,1

m12
, F 13,23

2 = B12 ∓B22

m13,23
2,1

m12
. (11)

Now let us calculate matrix elements of the hyperfine part of Hamiltonian. The potential of
hyperfine structure of L = 1 state, which is a part of the well-known Breit Hamiltonian, can
be written in the following simple form for three interacting particles with spins S1, S2, S3
respectively:

∆V hfs = a(S1S2) + b(S1S3) + c(S2S3), (12)

a =
2πα

3m1m2

(1 + κ1)

S1

(1 + κ2)

S2
δ(r12),

b =
2πα

3m1m3

(1 + κ1)

S1

(1 + κ3)

S3
δ(r13),
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c =
2πα

3m2m3

(1 + κ2)

S2

(1 + κ3)

S3
δ(r23).

Averaging procedure for such potential involves both averaging over radial and spin basis
functions. Analytical integration of radial matrix elements of δ(rij) can be performed as follows:

< δ(r12) >=< δ(ρ) >=

∫ ∫
dρdλδ(ρ)e−

1
2
[B11ρ2+B22λ2+2B12(ρλ)] =

= 4π

∫
λ2dλδ(ρ)e−

1
2
B22λ2 =

(2π)3/2

(B22)3/2
. (13)

< δ(r13) >=
(2π)3/2

(B11 − 2B12
m2
m12

+B22(
m2
m12

)2)3/2
, (14)

< δ(r23) >=
(2π)3/2

(B11 + 2B12
m1
m12

+B22(
m1
m12

)2)3/2
. (15)

To perform averaging over spin functions Wigner - Eckart theorem [5] can be used with success.
General formulas for spin averaging for any S1, S2 and S3 take the form:

< S′12, S|(S1S2)|S12, S >= (S1S2)S12
δS12S′

12
, (16)

< S′12, S|(S1S3)|S12, S >=
√

(2S′12 + 1)(2S12 + 1)(2S1 + 1)(S1 + 1)S1
√

(2S3 + 1)(S3 + 1)S3×

×(−1)S
max
12 +Smin

12 +S+S1+S2+S3+1

{
S12 S3 S
S3 S′12 1

}{
S1 S′12 S2
S12 S1; 1

}
, (17)

< S′12, S|(S2S3)|S12, S >=
√

(2S′12 + 1)(2S12 + 1)(2S2 + 1)(S2 + 1)S2
√

(2S3 + 1)(S3 + 1)S3×

×(−1)2S
max
12 +S+S1+S2+S3+1

{
S12 S3 S
S3 S′12 1

}{
S2 S′12 S1
S12 S2 1

}
. (18)

In the case of S1 = S2 = S3 = 1/2 the energy matrix has the form:

( 1
4a+ 1

4b+ 1
4c 0 0

0 1
4a−

1
2b−

1
2c

√
3
4 b−

√
3
4 c

0
√
3
4 b−

√
3
4 c −3

4a

)
. (19)

After the diagonalization we obtain the following eigenvalues:

λ1,2 = −1

4
(a+ b+ c)± 1

2

√
a2 + b2 + c2 − ab− bc− ac, λ3 =

1

4
(a+ b+ c). (20)

These eigenvalues are energies of hyperfine structure levels with respect to the total energy of
ground state. In case of S1 = S2 = S3 = 1/2, as it was already mentioned, we have 3 hyperfine
levels. In the case of S1 = 1, S2 = S3 = 1/2 the energy matrix is the following:

( 1
2a+ 1

2b+ 1
4c 0 0 0

0 1
2a−

5
6b−

5
12c

√
2
3 b−

√
2
3 c 0

0
√
2
3 b−

√
2
3 c −a+ 1

3b−
1
12c 0

0 0 0 −a− b+ 1
4c

)
. (21)
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After the diagonalization eigenvalues are:

λ1 =
1

4
(−4a− 4b+ c), λ2 =

1

4
(2a+ 2b+ c), (22)

λ3,4 =
1

4
(∓
√

9a2 − 14ab− 4ac+ 9b2 − 4bc+ 4c2 − a− b− c). (23)

For S1 = 1, S2 = S3 = 1/2 spin configuration we get 4 hyperfine levels. To calculate
hyperfine structure of muonic molecular ions tdµ, tpµ, dpµ we use first order perturbation
theory with a variational wave function obtained in variational calculation. For instance, to
calculate < δ(r12) > matrix element using first order perturbation theory one has to use the
following expression:

< δ(r12) >=

∑K
i,j=1 cicj

(2π)3/2

(Ai
22+A

j
22)

3/2∑K
i,j=1 cicj

8π3

[(Ai
11+A

j
11)(A

i
22+A

j
22)−(Ai

12+A
j
12)

2]3/2

, (24)

where ci, cj are linear variational parameters, K is a number of basis functions. Other matrix 
elements are evaluated in a similar way. Thus we obtain numerical values of a, b and c coefficients 
and energies of hyperfine structure levels of tdµ, tpµ, dpµ mesomolecular ions.

For numerical calculation, a computer code is written in the MATLAB system to solve the 
three-body Coulomb problem based on the Schrödinger equation. The Varga-Suzuki program 
[4] written in Fortran is taken as the basis. Matrix elements of the wave function normalization, 
kinetic and potential energies are inserted into the program. Changed the way to set the function 
of generating random numbers. For variational parameters the stochastic optimization procedure 
is being used. As a result, the numerical values of energy levels of hyperfine structure of tdµ, tpµ, 
dpµ are obtained in muon atomic units. All energies are in agreement with [3]. The difference 
for hyperfine splitting energies is connected with a smaller basis size and lower accuracy for the 
value of ground state total energy. It is worth mentioning that in our calculations we use double 
precision while in [3] quadruple precision is being used. This fact also contributes to difference 
of results.
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