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Abstract. We want to demonstrate a set of “universal” parameters that help to read 

quantitatively any trendless sequence (TLS). This set will be very useful in order to select the 

“pattern” noise from the tested one and thereby to solve the problem of calibration of random 

fluctuations and express some qualitative inputs in terms of these “universal” parameters. This 

set of quantitative parameters allows to compare the TLS(s) of different nature (acoustic, 

mechanical, electrochemical, vibrational and etc.) with each other. Using the algorithm, we 

analysed the acoustic noise recorded from the frictionless bearings (FB) in a normal state and 

noise from the FBs with artificially created defects. The proposed algorithm allows detecting 

the desired defect that initially had a qualitative description only. We do suppose that the 

proposed “universal” scheme free from uncontrollable errors can find a wide application in 

solution of many practical problems. 

1. Introduction 

The problem of extraction of information from trendless fluctuations (always accompanied with the 

registered responses from open systems) became very important from the middle of the last century. 

Before, these fluctuations were not considered, or generally were served as a "marker" of poor-quality 

measurements. As an example of this approach, one can serve as a noise reduction system, given in the 

most known book [1]. Nowadays, the improvement of measurement and processing systems, as well 

as the work of many researchers [2-7], made possible to look at this problem from a different angle: 

"Noise is a source of information." However, the analysis of the modern methods [7-16] shows that 

now a “universal” approach for analysis of the trendless fluctuations is absent. In many cases, the 

authors use the “old” methods (Fourier-transform, Wavelet-decompositions and other methods) or 

introduce additional processing algorithms that are based presumably on conventional methods. These 

methods work for solution of specific tasks and, from our point of view, they are not universal. For 

example, the Fourier method carries in itself unjustified supposition about “a priori” known periodicity 

of a random signal [7,17-19]. In addition, the F-transform creates some set of the calculated 

frequencies that do not belong to the system considered. Wavelet method does not contain the general 

criterion for selection of an optimal set of wavelets that is optimal to consideration of the chosen TLS 

[7, 19-21], but contains uncontrollable errors especially related to application of the specific types of 

wavelets to the chosen random sequence.   

Many methods contain the unjustified suppositions and uncontrollable errors [2, 4], however, the 

analysis of fluctuations as a small part of an accompanying signal requires an accurate and specific 

approach, at least in its preliminary analysis. We are not able to give all literature related to this 

subject (many papers are listed in book [2] and review [3] because each researcher dealing with 
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specific noise tries to develop its own method. This preliminary analysis put forward a problem that 

can be formulated as follows: is it possible to suggest some “universal” set of quantitative parameters 

that will be useful for treatment of large massive of data? These proposed parameters should have: (a) 

clear interpretation, (b) free from the treatment errors and (c) can be applicable for treatment of 

different data, containing large number of data points. In addition, these parameters should be based 

on some simple principle. 

In this paper, taking into account the previous attempts we want to define some simple set of 

quantitative parameters that can be applicable to consideration of a wide set of trendless sequences. 

We avoid deliberately the application of some fitting functions that are turned to be helpful for 

description of the SRAs [22, 23], however, the fitting error should be under a researcher control. All 

fitting functions with their parameters can be considered as the quantitative parameters of the second 

order. The basic idea, that allows introducing this universal set is based on the consideration of 

trendless fluctuations as a specific “struggle” between positive and negative tendencies (amplitudes). 

This principle/idea helps to add some new parameters to the conventional parameters as the mean 

value and the standard deviation. Usually a researcher-practitioner solves the following general 

problem: If some input predominant parameter is changed monotonically then is it possible “to notice” 

and express quantitatively this monotone change from the registered output fluctuations? The 

proposed algorithm (confirmed on the mimic and real data) allows to find the positive answer. 

2. Description the proposed algorithm 

As it had been mentioned in section 1, the idea was based on reasonable supposition that a “noise” is 

not a “disturbing factor”; it is used as a source of additional information. It was formulated thanks to 

papers [2, 4, 6], where scientists tried to extract information from random fluctuations. However, from 

the results obtained by them, it is impossible to select a universal idea for working with "noises". Also, 

we want also to find a positive answer on the following question: 

Is it possible to find a set of simple “universal” parameters that can characterize the behavior of any 

trendless sequence irrespective to the main characteristic as the probability distribution function, 

which in the most cases is not known? 

We must also bear in mind that the number of these parameters should be minimal and they should be 

rather “universal”. These parameters should not contain uncontrollable treatment errors and accurately 

reflect a nature of the considered fluctuations. Before, we should give some definitions for better 

understanding the algorithm proposed below. 

Under the TLS (Dyj = yj – <y>) we understand a set of fluctuations that oscillates relatively the 

horizontal OX axis. If the initial sequence has a trend then one can find the smoothed trend with the 

help of the POLS [24] and after its subtraction one can obtain the desired TLS again.  

A single fluctuation is defined as a random deviation of an amplitude relative OX axis and, therefore, 

can be positive or negative. From this point of view, the given TLS can be considered as a sum of 

amplitudes having two opposite tendencies in positive and in negative directions, respectively. 

Therefore, one can put forward a simple principle reflecting a “specific struggle” between positive and 

negative amplitudes and based on this idea one can define the following parameter: 

p1 = Rg(Dy) = max(Dy) – min(Dy).    (1) 

The value defines the range of the given sequence (Dy: Dyj, j=1, 2, …, N). Parameter p1 is always 

positive and corresponds to the maximal intensity of the given TLS. 

p2 = Rg(Dy) = max(Dy+) – min(Dy-).   (2) 

Parameter p2 defines the relative contribution of amplitudes that are located in the opposite sides of the 

TLS. If Rg(Dy)  0, it corresponds to an “ideal” balance between positive and negative amplitudes. 

In the opposite cases, when Rg(Dy) > 0 (<0) we observe a specific “spike” of positive (negative) 

amplitudes in the given TLS relatively each other.  

p3= DN = N(x+) – N(x-).    (3) 

Parameter p3 determines the number of amplitudes located in the opposite sides of the trendless 

sequence. If DN > (< ) 0 then the number of positive amplitudes exceeds the number of negative 

amplitudes and (vice versa).  
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p4=𝑁𝑣 =
2⋅𝑁

𝑁(𝑟𝑜𝑜𝑡𝑠)
, 2 < 𝑁𝑣 <

𝑁

3
.   (4) 

The value N(roots) determines the number of points (roots) that can cross the OX axis. This important 

parameter p4 determines the number of data points corresponding to one oscillation. If Nv close to 2 

then the oscillations of the given sequence have clearly expressed the HF character, while Nv becomes 

close to N/3 we receive finally a single LF oscillation. If Nv >N/3 then the desired oscillations are 

absent. One (two) crossing points are not sufficient for creation of a single oscillation. The parameter 

N(roots) allows to evaluate approximately the period T  2length(x)/N(roots) and frequency =2/T of 

the mean oscillation.  

p5=DS = S(y+) + S(y-), 𝑆(𝑦+,−) = ∑ 𝑦(+,−)𝑗
𝑁+,−

𝑗=1 .   (5) 

This parameter determines the total/cumulative contribution of all amplitudes corresponding to 

positive/negative amplitudes, respectively. 

For better understanding of the meaning of these parameters that follows from the “struggle” principle, 

we listed the combination of their signs in Table 1. 

Table 1. The combination of the parameters signs explaining a specific “struggle” between 

positive/negative tendencies. 

p1 = Rg(Dy) and  

p2= Rg(Dy) 
p3 = DN p4 = Nv  p5 = DS Comments 

 

Rg(Dy)  0 

“ideal” sequence 

DN > 0 
2 < Nv < 20 

HF fluctuations 
DS > 0 

Excess of positive 

amplitudes is 

predominant 

 

Rg(Dy) < Dyc 

Dyc critical range.  

 

DN < 0 

20 < Nv < 50 

Tendency to HF 

fluctuations 

DS > 0 

Excess of positive 

amplitudes is remained 

predominant  

 

Rg(Dy) > Dyc 

Critical behavior 

 

DN < 0 

Nv < N/10 

Tendency to LF 

fluctuations 

DS < 0 

Excess of negative 

amplitudes is 

predominant 

Rg(Dy) < (>) 0 

Spike of negative 

(positive) amplitudes  

DN > 0 

N/10 < Nv < N/3 

LF fluctuations 

 

DS < 0 

Excess of negative 

amplitudes is remained 

predominant 

 

Besides these parameters, one can add some parameters that follow from the fitting of the bell-like 

curve (BLC) by beta-distribution function [23]: 

𝑌 ≅ 𝐵𝑑(𝑥; 𝐴, 𝐵, 𝛼, 𝛽) = 𝐴(𝑥 − 𝑥0)𝛼(𝑥𝑁 − 𝑥)𝛽 + 𝐵.   (6) 

This function fits BLC Y(x) that, in turn, is obtained after the integration of the SRA (the sequence of 

the ranged amplitudes) with preliminary elimination of its mean value. We want to stress here that the 

BLC (> 0) describes a maximal fluctuation located in the given interval [x0, xN]. The meaning of these 

fitting parameters (A, B, α, ) and their calculations are explained in papers [22,23]. In addition to 

these four parameters, one can add the maximal value of the BLC: p6 = Ymx, p7= xmx (this characteristic 

point separates the positive set of amplitudes from the negative one), then the similar measures of 

asymmetry: 

𝑝8 = 𝐷𝑥 =
1

2
(𝑥0 + 𝑥𝑁) − 𝑥𝑚𝑥, 𝑝9 =

𝛼

𝛽
≡ 𝑟 =

𝑥𝑚𝑥−𝑥0

𝑥𝑁−𝑥𝑚𝑥
   (7) 

in vertical direction and a small parameter B that indicates a possible asymmetry in the horizontal 

direction. Therefore, summarizing the parameters determined above one can propose at least 10 

quantitative parameters (including also the mean value of y, p0=mean(y)) pretending on the “universal” 

description of the given TLS. We want to stress here that parameter p0 determines the specific 

“equilibrium” line separating the set of positive amplitudes from the negative ones. Parameters A, p6= 

Ymx is intensity of fluctuations. Ymx of the BLC separates the positive set of amplitudes from the 

negative ones. B is asymmetry in horizontal direction with respect to OX axis. p7 = xmx and p8=Dx, 
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where 𝐷𝑥 =
𝑥0+𝑥𝑁

2
− 𝑥𝑚𝑥 have two cases. If Dx close to zero – BLC is symmetrical. If Dx> 0 (< 0) 

excess of negative amplitudes, (excess of positive amplitudes). p9=r, where  
𝛼
𝛽

≡ 𝑟 = 𝑥𝑚𝑥−𝑥0
𝑥𝑁−𝑥𝑚𝑥

 also have 

two cases. If r  1 – BLC is symmetrical. If r < 1 (> 1) excess of negative amplitudes (excess  of 

positive amplitudes). S(α,)=α+,  0< S(α,) <1 is the most of amplitudes is located near the mean 

value, where 1< S(α,) <2 fractal property of the TLS. In this research, we will use only the 

parameters p0-p9. As it follows from examples given below these parameters are sufficient for the 

solution of the problems formulated in the text. 

As it has been mentioned in Introduction, we deliberately avoid the application of the FFT (the fast 

Fourier transform). This transformation is based on a priori (and, in the most cases, invalid) 

supposition that the given TLS is pure periodical and, in addition, it contains the excess of frequencies 

that do not exist in the given TLS reflecting the output of the studied system. That is why in the most 

cases the FT of the given TLS is not used as a fitting function [17,18] and is considered as an 

“independent” source of information. The same situation is related to application of the wavelets [19-

21, 25, 26]. At present time, we do not have the justified criterion for selection of an optimal wavelet 

that fully corresponds to the analysis of the given TLS. Besides, the selected wavelet family contains 

some uncontrollable errors and application of two and more types of wavelets taken from other 

families can lead to different/contradictory results.  

Finishing this section, we should show a possible way of application of these 10 parameters in analysis 

of a large amount of data. As it was mentioned above, the most part of researches solve the following 

problem: there is one predominant and external factor F (for example, pressure P, temperature T, 

humidity H, intensity of radiation I, substance concentration C and etc.) that is changed monotonically 

in the certain range Fk= ak + b (k=0,1,…, K). For each fixed value of Fk we have some rectangle 

matrix of measurements NM (N  M), where (j=1,2,…N) determines the number of data points and M 

(m=1,2,…,M) determines the total number of repeatable (or statistically similar) measurements. We 

imply that this initial matrix contains only fluctuations (serving as an additional source of information) 

expressed in the form of the TLS(s). Having these huge massive of data is it possible to reduce them to 

the minimal number of quantitative parameters reflecting some common features of the phenomenon 

studied? The solution can be divided on some steps: 

S1. We transform each TLS to the reduced sequence containing only n (in our case n=10) quantitative 

parameters. Therefore, we obtain the reduced matrix nM. We transpose this matrix (n < M) and 

obtain the matrix Mn= (nM)
T
, where number of measurements (rows) exceeds the number of the 

reduced parameters n (columns). Each column (pm,l : m=1,2,…,M; l=1,2,…,n) for the fixed l has a 

different statistical meaning and in some cases it has a sense to make them statistically similar to each 

other with the help of transformation: 

𝑁𝑟𝑚𝑙 = −1 <
𝑝𝑙−𝑚𝑒𝑎𝑛(𝑝𝑙)

𝑚𝑎𝑥(𝑝𝑙)−𝑚𝑒𝑎𝑛(𝑝𝑙)
< 1, 𝑙 = 1,2, . . . , 𝑛.   (8) 

Here pl (l=1,2,…,n) determines the vector of one of the reduced parameters belonging to the reduced 

set n.  

S2. Then one can apply the reduction procedure to the Nrml vertical vector having m=1,2,…,M data 

“points”. After that, we obtain the square matrix nn containing only reduced parameters taken over 

all measurements.  

S3. Finally, for the remaining reduced matrix Prn,n one can apply the singular valued decomposition 

(SVD) operation [27] (widely used in the PCA [28]) and find the eigenvalues of this matrix. These 

eigenvalues (associated with the principal components) located in the descending order (Ev1> Ev2 

>…> Evn) can characterize the initial rectangle matrix NM forming n-possible functions Evl(k) 

depending on the external factor Fk. From these functions one can select the most sensitive and 

monotone function that reflects the monotone behavior of the predominant factor Fk. We should stress 

that this approach is rather “universal” and can be applied to a wide set of TLS(s).  

3. Quantitative “reading” of real sequences 

One of us (RRN) received an admission to real data. These real data were related to detections of 

defects in the frictionless bearings (FB(s)) from acoustic recordings that were performed in the same 
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experimental conditions (the fixed recording distance from the source of a noise and registered 

microphone, temperature, humidity, pressure were conserved during the whole experiment) for a 

normal FB and the chosen bearing with defects. The types of defects are explained and listed in Table 

2. 

Table 2. Artificially created defects in the frictionless bearings (FB). 

Number 

of 

defect 

Description of 

the defect 
Realization technique 

1 Separator defect Separator was unclamped. One rivet was removed.  

2 Separator defect Separator was unclamped Two rivets were removed in random order. 

3 Defect of the 

bearing ball  

The defect was created by the electron discharge method. The hole 

diameter on the defect of the FB ball was varied in the interval 1.0 up 

to 1,5 mm. The measured depth of the hole was 0.2 mm. 

4 Defect created 

on the external 

side of a bearing 

race 

The defect was created by the electron discharge method. The hole 

diameter on the external FB race was varied in the interval 1.0 up to 

1.5 mm.  

The measured depth of the hole was 0.2 mm. 

5 Defect created 

on the internal 

side of a bearing 

race 

The defect was created by the electron discharge method on the 

internal surface. The hole diameter on the internal FB race was varied 

in the same interval 1.0 up to 1.5 mm.  

The measured depth of the hole was 0.2 mm. 

6 Bad lubrication In the normal oiling metal chips in proportion  

(30 % chips) were added.  

Comments to Table 2. Each acoustic recording at the same experimental conditions for normal and 

defect FBs was repeated 15 times. The total number of data points for each recording includes 44100 

data points. 

 

Each experiment for the given FB was repeated 15 times, the total number of the data points in each 

recording was N = 44100. To work with the data the algorithm was offered, which includes in itself 

the following steps: 

S1. For each defect we have the rectangle matrix of the size NM (N=44100, M=15). With the help of 

the proposed algorithm we reduce the initial matrix to the reduced matrix n3 (where n=10 and it 

includes the set of parameters (p0-p9) defined in section 2). From each measurement we took only 

three basic parameters (s=1 (mean(m)), s=2 (stdev(m)) and s=3 (range(m)=max(m)-min(m)), where 

m=1,2,…M (M=15). Therefore, after the first step we receive seven matrices of the size ns (including 

the normal FB and associated with 6 defects listed in the Tables 3-5. 

Table 3. The total set of matrices obtained for all types of defects (defects 1-2). 

Prms 
Mean-

nrm 

Stdev-

nrm 

Range-

nrm 

Mean-

def1 

Stdev-

def1 

Rng 

def1 

Mean-

def2 

Stdev-

def2 

Rng 

def2 

p0 -4.67025 0.47834 1.90576 -3.27902 1.58945 4.87139 -3.88459 0.66019 1.97109 

p1 1093.53 73.4428 301 2322.4 303.684 1174 11333.9 465.827 1408 

p2 70.0738 42.9153 176.835 130.558 124.894 413.191 1244.47 236.621 780.878 

p3 -145.467 147.4 602 39.2 97.2469 290 -448.2 116.953 400 

p4 11.6731 1.71566 5.00173 4.48757 0.1152 0.27368 4.54249 0.08892 0.28814 

p5 -70.0738 42.9153 176.835 -130.558 124.894 413.191 -1244.47 236.621 780.878 

p6 1.8098E6 139300 366160 5.37576E6 248281 584650 1.0829E7 436526 1.4148E6 

p7 21.9768 0.0737 0.301 22.0691 0.04862 0.145 21.8254 0.05848 0.2 

p8 0.07323 0.0737 0.30101 -0.0191 0.04862 0.145 0.22461 0.05848 0.2 

p9 0.9934 0.00662 0.02699 1.00174 0.00442 0.01319 0.97985 0.0052 0.01781 
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Table 4. The total set of matrices obtained for all types of defects (defects 3-5). 

Prms 
Mean-

def3 

Stdev-

def3 

Range-

def3 

Mean-

def4 

Stdev-

def4 

Rng 

def4 

Mean-

def5 

Stdev-

def5 

Rng 

def5 

p0 -3.0545 0.7435 2.3494 -3.00654 0.5384 1.2912 -3.09632 0.2761 0.9883 

p1 2432.5 407.48 1328 2388 435.37 1415 1608.8 619.73 2086 

p2 210.809 241.52 803.45 267.013 282.60 976.40 -17.2073 134.98 510.94 

p3 -54.4 199.81 536 -244 155.22 526 -165.6 100.18 280 

p4 5.54224 0.0245 0.08 6.28622 0.2036 0.5228 6.40816 0.4357 1.12855 

p5 -210.80 241.52 803.45 -267.013 282.60 976.40 17.2073 134.98 510.94 

p6 3.870E6 270407 661720 3.49421E6 308128 728170 2.60445E6 480303 1.1019E6 

p7 22.0223 0.09991 0.268 21.9275 0.07761 0.263 21.9667 0.05009 0.14 

p8 0.0277 0.09991 0.26801 0.1225 0.07761 0.26301 0.0833 0.05009 0.14 

p9 0.99753 0.00905 0.02429 0.98898 0.007 0.02372 0.99248 0.00451 0.01261 

Table 5. The total set of matrices obtained for all types of defects (defect 6). 
Prms Mean-def6 Stdev-def6 Range-def6 

p0 -4.23894 1.07338 2.47347 

p1 1417.7 357.107 880 

p2 51.178 99.9625 378.901 

p3 -300 160.135 592 

p4 8.15484 2.25404 5.10398 

p5 -51.178 99.9625 378.901 

p6 2.427E6 554516 1.19996E6 

p7 21.8995 0.08007 0.296 

p8 0.1505 0.08007 0.29601 

p9 0.98647 0.00715 0.02644 

 

S2. In order to see the possible differences between the parameters referred to normal FB and bearing 

with the given defect one can consider the ratio: 

𝑅𝑡𝑠(𝑝) = [(
𝑀𝑑(𝑠)(𝑝)

𝑀𝑛(𝑠)(𝑝)
) − 1] , 𝑠 = 1,2,3; 𝑝 = 0,1, . . . ,9.   (8) 
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a)                      b) 

Figure 1. (a). Typical noise record obtained for the FB in normal state. It corresponds to the first 

sampling. Solid red line shows the desired SRA that divides the positive set of amplitudes from the 

negative ones. If we divide this line relatively mean value and then integrate it, we obtain the curve 

showing the summarized contributions of these amplitudes. These curves are shown in the next figure. 

(b). These two curves determine the total contribution of the positive (blue line) and negative (red line) 

amplitudes. They are slightly differed from each other. This difference (-132.96) is shown inside in the 

figure. On the right-hand side we show the total set of the reduced parameters corresponding to the 

chosen sampling. The meaning of these parameters is given in the text and is explained in Tables 1 

and 2. 
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e)                        f) 

Figure 2. (a). The sensitivity of the function (5) to the presence of the defect 1 that corresponds to 

extraction of one rivet. As one see from this figure the parameters p1,2,5,6 differentiate easily the 

presence of the first defect from the sound records corresponding to the normal work of the FB. (b). It 

is obvious that extraction of two rivets (defect number 2) should lead to more expressed distortions in 

comparison with the records corresponding the normal state. This figure demonstrate clearly this 

effect. The same parameters p1,2,5,6 detect this defect, however the scale of deviations increases 

essentially. (c) Here we show the parameters p1,2,5 that can differentiate the defect number 3. All three 

ratios enable to select this defect from the normal working state. (d) Comparing this figure with the 

previous figure corresponding to the defect 3 one can notice that the same parameters p1,2,5 were 

involved in detection of the defect 4, however, these defects are different. (e) This defect can be 

differentiated only by two last ratios associated with standard deviations and ranges. The ratio 

associated with mean value becomes less informative and does not prove its efficiency. (f) This defect 

related to bad lubrication can be detected only with the help of two parameters p1 and p6. Other two 

parameters p2,5 can be considered as the secondary indicators. This example shows that in practice in 

would be desirable to have a set of parameters having different sensitivity to the influence of the 

external factor. At least these 10 selected parameters are proved their efficiency in testing them on real 

data. 
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In the result of realization of these two steps, we obtain three functions depending on the 10 

parameters (p0-p9) for each given defect. The subsequent analysis of these functions will be simple: if 

the function (8) exceeds the unit value then this ratio will have distinct feature that differentiates the 

defect from the normal working state. It is obvious that the set of parameters (p0-p9) will have different 

sensitivity to each defect and a priori to evaluate this sensitivity is impossible. Figure 5 shows the 

fixed sampling of the initial set of data associated with the recording of the FB in normal state. Other 

data associated with the chosen type of defect look similar and therefore are omitted. 

Figures 2(a-f) corresponding to number of the listed defects present themselves the key figures that 

help to differentiate the sound files corresponding to the given defect from the normal sound file. 

We constructed them in accordance with expression (8) in order to see the desired differences 

engendered by each defect. 

As one can see from analysis of these six figures, the selected parameters (p0-p9) are sufficient to 

detect them all and they have different sensitivity to the presence of the given defect. Comparing all 

figures with each other, one can say that the defects one and two are differentiated more easily in 

comparison with last defect related with bad lubrication. In the last case only two parameters p1,6 have 

the most distinctive deviations and two ratios only as the standard deviations and ranges enable to 

detect it.  

4. Results and discussion 

In this work, some universal “platform” for processing various types of data was demonstrated. In our 

opinion, it can attract the attention of many researchers working in various branches of engineering 

and the natural sciences. To summarize and focus on its distinctive features: 

1. The proposed “platform” is based on a simple “struggle” principle between positive and negative 

amplitudes. It is free from the uncontrollable errors and does not use any unjustified supposition as the 

FFT or wavelet analysis; 

2. The proposed platform reminds a “violin cleats” which allow you to quite flexibly customize our 

tool. If necessary, the sensitivity can be adjusted by the number of parameters. This makes it possible 

to increase the detection of the prevailing external factor;  

3. The instructive example based on real data shows that the proposed platform enables to detect the 

defects that initially can be described only qualitatively. 

Before, any researcher knew presumably only two basic “universal parameters” as the mean value (it 

can be interpreted as a specific equilibrium line separating the positive amplitudes from the negative 

ones) and the standard deviation (it evaluates approximately the deviations from this line). The 

proposed scheme can add another set of universal parameters based on specific tendencies of a 

“struggle” between positive and negative amplitudes. 
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