Характеристики круглого оптического волновода из кирального метаматериала

В.Е. Абрамов¹, Д.С. Клюев¹, А.М. Нещерет¹, О.В. Осипов¹

¹Поволжский государственный университет телекоммуникаций и информатики, Льва Толстого 23, Самара, Россия, 443010

Аннотация

Настоящая работа посвящена исследованию влияния оптической активности среды на характеристики основной моды оптического волновода. Приведена модель распространения электромагнитных волн светового диапазона в таких волноводах, которая учитывает оптическую активность среды. Получено дисперсионное уравнение для основной моды круглого волновода, учитывающее оптическую активность среды. Показано, что в случае отсутствия оптически активной среды, данное дисперсионное уравнение переходит в известное уравнение для основной моды обычного круглого оптического волновода.

Ключевые слова

Киральный метаматериал, оптический волновод, дисперсионные характеристики

1. Введение

В настоящее время проводятся активные исследования в области создания волноведущих структур нового поколения на основе киральных метаматериалов, а также фотонных кристаллов, обладающих оптической активностью. Такие волноведущие структуры имеют лучшие характеристики по сравнению с традиционными решениями. Однако в настоящее время существует актуальная научно-техническая задача разработки корректных методов расчёта характеристик таких волноведущих структур на основе оптически активных сред, а также их математических моделей.

Для корректного описания процессов распространения световых волн в оптических волноводах из оптически активных материалов необходимо использовать специальные материальные уравнения [1-3], учитывающие дополнительный макроскопический параметр, определяющий степень активности среды [4-6]. В радиочастотном диапазоне данный параметр получил название обобщенного параметра киральности.

В связи с тем, что ввиду относительно небольшого влияния данного параметра оптической активности на распространение световых волн в волноведущих структурах, в большинстве исследований данный параметр игнорируется. Однако для построения корректных математических моделей волноведущих сред с оптической активностью данный параметр необходимо учитывать. Такой подход позволит определить границы применимости упрощенных моделей, построенных на основе классических материальных уравнений.

2. Волноведущие структуры из оптически активных материалов

Подавляющее большинство кристаллических материалов, которые применяются при изготовлении оптических волокон (активных и пассивных), обладают оптической активностью. Под оптической активностью среды понимается свойство, позволяющее поворачивать плоскость поляризации световой волны. В свою очередь, под активностью материалов понимается возможность усиления оптических волн.

В целях учёта оптической активности среды при составлении математической модели круглого волновода, структура которого приведена на рис. 1, были использованы специальные материальные уравнения, согласно формализму Линделла-Сиволы [4-6]:

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E} - i\chi \sqrt{\varepsilon_0 \mu_0} \vec{H},$$

$$\vec{B} = \mu_0 \mu \vec{H} + i\chi \sqrt{\varepsilon_0 \mu_0} \vec{E}$$
(1)

где ε, μ - относительные диэлектрическая и магнитная проницаемости, а χ - параметр оптической активности материала.

Рисунок 1: Структура круглого волновода

Математическая модель распространения волн в круговом волноводе была построена с использованием цилиндрической системы координат, в которой световая волна распространяется вдоль координаты *z*.

С помощью метода частичных областей было получено дисперсионное уравнение для собственной моды круглого волновода с оптически активной сердцевиной:

$$\frac{n^2}{R_1^2} \left(\frac{1}{p_2^2} - \frac{1}{p_1^2} \right) \left(\frac{\varepsilon_2 \mu_2}{\gamma_{\perp 2}^2} - \frac{\varepsilon_1 \mu_1}{p_1^2} \right) = (\tau_2 + \theta_1)(\tau_1 + \theta_2),$$

$$\tau_2 = \frac{\varepsilon_2}{2p_2^2} \left(\frac{\hat{J}_n(\alpha_{R2}R_1)}{J_n(\alpha_{R2}R_1)} - \frac{\hat{J}_n(\alpha_{L2}R_1)}{J_n(\alpha_{L2}R_1)} \right); \quad \theta_1 = -\frac{\varepsilon_1}{p_1^2} \frac{\hat{H}_n^{(2)}(p_1R_1)}{H_n^{(2)}(p_1R_1)}; \quad \tau_1 = \frac{\mu_1}{p_1^2} \frac{\hat{H}_n^{(2)}(p_1R_1)}{H_n^{(2)}(p_1R_1)}; \\ \theta_2 = \frac{\varepsilon_2}{2p_2^2} \left(\frac{\hat{J}_n(\alpha_{R2}R_1)}{J_n(\alpha_{R2}R_1)} - \frac{\hat{J}_n(\alpha_{L2}R_1)}{J_n(\alpha_{L2}R_1)} \right); \quad p_{1,2} = \sqrt{k_0^2 \varepsilon_{1,2} \mu_{1,2} - \gamma^2}; \\ \alpha_{R,L2} = \sqrt{k_0^2 \left(\sqrt{\varepsilon_2 \mu_2} \pm \chi\right)^2 - \gamma^2}.$$

$$(2)$$

Здесь у - постоянная распространения собственной волны; *n* - номер моды.

При расчёте характеристик круглого волновода было установлено, что при удалении частоты волны от критической частоты волновода, происходит рост разности постоянных распространения с увеличением частоты волны, причём, чем выше параметр оптической активности χ , тем больше отличаются дисперсионные характеристики по сравнению с моделью без учёта данного параметра.

3. Литература

- Capolino, F. Theory and Phenomena of Metamaterials / F. Capolino. Boca-Raton: Taylor & Francis Ltd., 2009. – 992 p
- Padilla, W. Composite medium with simultaneously negative permeability and permittivity / W. Padilla, D.R. Smith, D.C. Vier // Phys. Rev. Lett. 2000. Vol. 84(18). P. 4184-4187.
- [3] Pendry, J.B. Negative Refraction Makes a Perfect Lens / J.B. Pendry // Phys. Rev. Lett. 2000.
 Vol. 85(18). P. 3966-3969.
- [4] Lindell, I.V. Electromagnetic waves in chiral and bi-isotropic media / I.V. Lindell, A.H. Sihvola, S.A. Tretyakov. London: Artech House, 1994. 291 p.
- [5] Lakhtakia, A. Timeharmonic electromagnetic fields in chiral media / A. Lakhtakia, V.K. Varadan, V.V. Varadan. Berlin: Heidelberg and Boston, 1989. 121 p.
- [6] Tretyakov, S.A. Electromagnetics of complex media: chiral, biisotropic, and certain bianisotropic materials / S.A. Tretyakov // Jour. of Comm. Tech. and Elec. – 1994. – Vol. 39(14). – P. 4-32.