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Abstract. Among a large number of tasks on graphs, studies related to the placement of objects 

with the aim of increasing the information content of complex multi-parameter systems find 

wide practical application (for example, in transport and computer networks, piping systems, in 

image processing). Despite years of research, accurate and efficient algorithms cannot be found 

for placement problems. It is proposed to consider the solution of the allocation problem in the 

context of decomposition of the initial network into k regions, in each of which a vertex with 

some centrality property is searched. This article provides an analysis of sources for solving the 

problem of placement in graphs, as well as methods of decomposition of graph structures. 

Following the main provisions of the theory of spectral clustering, the disadvantages of the 

splitting applied criteria Rcut and Ncut are indicated. It is shown that the application of the 

distance minimization criterion Dcut proposed in this paper allows to obtain high results in the 

decomposition of the graph. The obtained results are based on the examples of searching for 

sensor placement vertices in the known ZJ and D-Тown networks of the EPANET hydraulic 

modeling system. 

1. Introduction 

Graph models provide an opportunity to study an object based on its topology, without delving into 

the physical nature of the processes occurring in the system under consideration, which, in turn, 

greatly simplifies the calculations [1-3]. Among the many problems on graphs, studies related to 

splitting the original graph into a predetermined number of connected disjoint components have found 

wide practical application [4-8]. Methods of decomposition of graph structures make a significant 

contribution to the speed of search algorithms, which is especially important in conditions of 

restrictions on computational and time resources. However, widespread algorithms of spectral 

clustering based on minimization of Rcut and Ncut sections do not always allow to solve the problem 

of object placement in the best way. The reason for this is that the decomposition by these criteria 

takes into account the number of cut edges and the size of the resulting subgraphs, but does not take 

into account the distances between the vertices and the nature of their location within these 

subdomains. This paper provides an example showing that decomposing the original graph of 12 

vertices and 12 edges into two parts, there are two splitting options that meet the Rcut and Ncut 

criteria, but when considering these options in terms of the distances between the vertices within these 

subdomains, the second option is preferred. The use of this criterion, designated in the paper as Dcut, 

in the decomposition of graphs allowed us to solve the problem of placing objects in the network with 

a high quality result, comparable and even better than spectral methods based on Rcut or Ncut criteria, 

which confirms the applicability of the Dcut criterion in spectral methods of clustering graphs. 
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2. The analysis of the sources 

The solution of the problem of finding the optimal placement of objects in k nodes for a network with 

the number of vertices |𝐶| by the full search method requires 
|𝐶|!

𝑘!(|𝐶|−𝑘)!
 iterations. For example, for a 

small network with |𝐶|=100 and k=5 it is required 10
7,88

 iterations, which makes practical application 

of this method impossible. Trial-and-error, greedy, and stochastic algorithms are the most widely used 

approaches for solving the placement problem. 

The trial-and-error algorithm is based on iterations. This approach provides a fairly close to optimal 

solution, but requires a lot of time. 

The principle of the greedy algorithm is to make locally optimal decisions at each stage, assuming 

that the final solution will also be optimal. The solution is fast, but not accurate.  

Solving by evolutionary computation, simulated annealing algorithms is based on choosing 

combinations of nodes placing objects on the basis of the probabilistic approach does not provide 

warranty of solution time and solution as a whole. 

In [8, 9] the solution of the placement problem is proposed to be considered in the context of the 

decomposition of the initial network into k regions, in each of which a vertex with some property of 

centrality is searched. When decomposing a graph, it is necessary to minimize the number of edges 

connecting the vertices of different subdomains. A prerequisite for this is the connectivity of the 

selected subgraphs.  

Many methods are used to solve the graph decomposition problem [10-15]. 

Since the 1990s, spectral graph theory has been used in many fields [16]. The main advantage of 

spectral graph theory is simplicity, so any system represented as a graph can be analyzed only by the 

spectrum of the associated matrix. 

Fiedler in [17] showed that the eigenvector that corresponds to the second smallest eigenvalue of 

the Laplacian matrix can be used to solve the problem of bipartite graph decomposition. Hagen and 

Kahng [18] introduce the criterion of rational sections (Rcut) to assess the quality of decomposition. 

Shi and Malik in [19] use Fiedler's conclusions for iterative bipartite partitioning and introduce the 

normalized sections criterion (Ncut). The development and application of the theory of spectral 

clustering are also considered in [20-25]. 

3. Theory of spectral clustering of graphs 

3.1. Fundamentals 

The class of spectral decomposition methods [26-29] combines elements of graph theory and linear 

algebra. They are based on the application of the properties of eigenvalues and vectors of the 

Laplacian matrix of the graph.  

The eigenvectors contain information about the topology of the graph. Based on the problems, the 

spectral graph theory uses: the main eigenvector [30], Fiedler eigenvector [17], a group of the first k 

eigenvectors [19]. A review of spectral clustering methods is presented in [31, 32]. 

Spectral clustering algorithms consist of three main steps: 

1) For the original graph G, the adjacency matrix W, the matrix of degrees of vertices D, the 

Laplacian matrix L are forming. In addition to the non-normalized Laplacian matrix, its normalized 

equivalents are also used, for example, the Laplacian matrix normalized by the random walk method 

[19] or the symmetric normalized Laplacian matrix [20]. 

2) Determination of eigenvalues and eigenvectors of the non-normalized or normalized Laplacian 

matrix, which are used in the formation of the matrix of eigenvectors U. 

3) Division of the set of vertices into k clusters by classical clustering methods, for example, the k-

means method in relation to the matrix U.  

3.2. Graph cut point of view 

Methods of spectral clustering are aimed at obtaining such subgraphs that the difference between the 

constituent elements of the subdomain is minimal with the maximum difference between the 
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subgraphs. In this case, the subgraphs must be connected and balanced in size. To implement these 

conditions, the criteria proposed in [18, 19]: 

𝑅𝑐𝑢𝑡(𝐶1, … , 𝐶𝑘) = ∑
𝑐𝑢𝑡(𝐶𝑖, 𝐺)

|𝐶𝑖|

𝑘

𝑖=1

 → 𝑚𝑖𝑛 

𝑁𝑐𝑢𝑡(𝐶1, … , 𝐶𝑘) = ∑
𝑐𝑢𝑡(𝐶𝑖, 𝐺)

𝑣𝑜𝑙(𝐶𝑖)

𝑘

𝑖=1

 → 𝑚𝑖𝑛 

 

(1) 

 

(2) 

where G - is the initial graph, 𝐶𝑖 – i-th subgraph, k is the number of sub-areas to divide the original 

graph, 𝑐𝑢𝑡(𝐶𝑖, 𝐺) - the sum of the weights of the cut edges, |𝐶𝑖| – is the quantity of vertices in the 

subgraph i, 𝑣𝑜𝑙(𝐶𝑖) – the sum of the weights of edges in subgraph i. 

It should be noted that the values of both criteria tend to a minimum with decreasing edge sections 

and with balancing subgraphs (|𝐶1| = |𝐶2| = ⋯ = |𝐶𝑘|  or 𝑣𝑜𝑙(𝐶1) = 𝑣𝑜𝑙(𝐶2) = ⋯ = 𝑣𝑜𝑙(𝐶𝑘)). 

According to [32], the Rcut criterion is preferred for decomposition by non-normalized matrices, and 

Ncut is preferred for decomposition by normalized matrices.  

However, the criteria under consideration do not always clearly indicate a solution. Figure 1 shows 

a graph with 12 vertices and 12 edges. The weight of each edge, according to the figure, is 10. 

 
Figure 1. the Original graph with 12 vertices and 12 edges. 

 

When searching for the optimal decomposition on k=2 subgraphs, we get two variants (figure 2). 

a)  b)  

Figure 2. Decomposition of the original graph into 2 parts: a) with a partition on edges 2-11 and 5-8; 

b) with a partition on edges 3-4 and 9-10. 

 

Next, according to (1) and (2), we define the values of the Rcut and Ncut criteria for the first (figure 

2.a) and second (figure 2.b) variants of the partition:  

𝑅𝑐𝑢𝑡1 =
𝑐𝑢𝑡2,11 + 𝑐𝑢𝑡5,8

|𝐶1|
+

𝑐𝑢𝑡2,11 + 𝑐𝑢𝑡5,8

|𝐶2|
=

10 + 10

6
+

10 + 10

6
= 6,67 

𝑁𝑐𝑢𝑡1 =
𝑐𝑢𝑡2,11 + 𝑐𝑢𝑡5,8

𝑣𝑜𝑙(𝐶1)
+

𝑐𝑢𝑡2,11 + 𝑐𝑢𝑡5,8

𝑣𝑜𝑙(𝐶2)
=

10 + 10

50
+

10 + 10

50
= 0,8 

(3) 

 

(4) 

𝑅𝑐𝑢𝑡2 =
𝑐𝑢𝑡3,4 + 𝑐𝑢𝑡9,10

|𝐶1
′|

+
𝑐𝑢𝑡3,4 + 𝑐𝑢𝑡9,10

|𝐶2
′|

=
10 + 10

6
+

10 + 10

6
= 6,67 

𝑁𝑐𝑢𝑡2 =
𝑐𝑢𝑡3,4 + 𝑐𝑢𝑡9,10

𝑣𝑜𝑙(𝐶1
′)

+
𝑐𝑢𝑡3,4 + 𝑐𝑢𝑡9,10

𝑣𝑜𝑙(𝐶2
′)

=
10 + 10

50
+

10 + 10

50
= 0,8 

(5) 

 

(6) 

From calculations it is clear that from the point of view of Rcut and Ncut both variants of splitting 

give the same result. However, when solving placement problems, it is important to consider the 

distances between all vertices in subgraphs. Tables 1 and 2 show the distances between vertices in 

subgraphs when decomposing by the first (figure 2.a) and second variants of the partition (figure 2.b). 

It can be seen from the tables that the second variant of splitting the graph into 2 parts provides a 

smaller distance length in subgraphs, which indicates a greater degree of grouping of vertices in 

subgraphs in the second variant of decomposition.  
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Table 1. Distances between vertices in subgraphs (decomposing by the first variant of the partition). 

Subgraph 𝑪𝟏 Subgraph 𝑪𝟐 

Nodes 1 2 3 4 5 6 Nodes 7 8 9 10 11 12 

1 0 10 20 30 40 50 7 0 10 20 30 40 50 

2 10 0 10 20 30 40 8 10 0 10 20 30 40 

3 20 10 0 10 20 30 9 20 10 0 10 20 30 

4 30 20 10 0 10 20 10 30 20 10 0 10 20 

5 40 30 20 10 0 10 11 40 30 20 10 0 10 

6 50 40 30 20 10 0 12 50 40 30 20 10 0 

 Sum: 700  Sum: 700 

 

Table 2. Distances between vertices in subgraphs (decomposing by the second variant of the 

partition). 

Subgraph 𝑪𝟏
′ Subgraph 𝑪𝟐

′ 

Nodes 1 2 3 10 11 12 Nodes 4 5 6 7 8 9 

1 0 10 20 30 20 30 4 0 10 20 30 20 30 

2 10 0 10 20 10 20 5 10 0 10 20 10 20 

3 20 10 0 30 20 30 6 20 10 0 30 20 30 

10 30 20 30 0 10 20 7 30 20 30 0 10 20 

11 20 10 20 10 0 10 8 20 10 20 10 0 10 

12 30 20 30 20 10 0 9 30 20 30 20 10 0 

 Sum: 580  Sum: 580 

3.3. Distance minimization criteria 

Let's consider the solution of the problem of placing k =2 objects on the basis of the preliminary 

decomposition of the graph according to options 1 and 2. 

The problem under consideration can be formulated as follows. There is a graph G whose nodes are 

characterized by certain parameter estimates Pi, and whose edges are characterized by weights Wj. 

After setting the next object in the vertex, the estimates are recalculated according to the formulas:  

𝑃𝑆 = 1 

𝑃𝑖 = 𝑚𝑎𝑥(𝑃𝑦 ∙ 1/𝑊𝑖,𝑦) 

(7) 

(8) 

where 𝑃𝑆 - evaluation of the deterministic value of the parameter in the node setup of the object, 𝑃𝑦 - 

evaluation of the deterministic value of the parameter of node neighbor, 𝑊𝑖,𝑦 - is the weight of edge 

connecting two adjacent vertices i and y. 

It is necessary to find such an arrangement of objects in the nodes that provides a minimum of the 

average value of the uncertainty estimation of the target parameter: 

𝐹 = 1 − 𝑚𝑒𝑎𝑛(𝑃) → 𝑚𝑖𝑛 (9) 

The values of the estimates Pi of each vertex for the decomposition variants 1 and 2 are shown in 

figure 3: 

a) b)  

Figure 3. Values of Pi scores: a) splitting by edges 2-11 and 5-8; b) splitting by edges 3-4 and 9-10. 

 

White color indicates the vertices where the objects are placed, next to the vertices are given the 

values of the determinism estimates Pi. As a result, we get: 

𝐹1 = 1 − 𝑚𝑒𝑎𝑛(𝑃) = 0,796 
𝐹2 = 1 − 𝑚𝑒𝑎𝑛(𝑃′) = 0,780 

(10) 

(11) 

The value of 𝐹1 is greater than 𝐹2, which means that the placement based on the decomposition of 

the second option gives better results. This result is mainly due to the fact that the vertices in the 

subgraphs of the second variant of the decomposition are grouped more tightly. 
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Thus, the use of a criterion that takes into account the length of distances in subgraphs is justified 

in solving the problems of placing objects on graphs. In this paper, we propose the following criterion 

for minimizing distances (12): 

𝐷𝑐𝑢𝑡(𝐶1, … , 𝐶𝑘) = ∑ (
𝑐𝑢𝑡(𝐶𝑖, 𝐺)

𝑣𝑜𝑙(𝐶𝑖)
∗

𝑑𝑖𝑠𝑡𝑖

|𝐶𝑖| ∗ (|𝐶𝑖| − 1)
∗

|𝐶|

|𝐶𝑖|
)

𝑘

𝑖=1

 → 𝑚𝑖𝑛 

 

(12) 

where 𝑑𝑖𝑠𝑡𝑖 - is the sum of the distances between all vertices in subgraph i, |𝐶| - is the number of all 

nodes in the original graph. 

4. Case study 

The proposed solution, based on the application of a criterion that takes into account the distance 

lengths in subgraphs, was tested on the example of solving the problem of placing pressure sensors in 

water supply networks ZJ and D-Тown of EPANET hydraulic modeling system (figure 4).  

a)                  b)  

Figure 4. Water supply networks: a. ZJ, b. D-Тown. 

 

ZJ is a network with 114 nodes and 164 pipes, D-Town has 407 nodes and 459 pipes. Nodes 

(consumers) of the considered networks are characterized by pressure determinism estimates, and 

edges (pipelines) are characterized by lengths Lj. After installing the next sensor in the network, the 

determinism estimates are recalculated by the formulas: 

𝑃𝑆 = 1 

𝑃𝑖 = m𝑎𝑥 (𝑃𝑦  ∙ 𝛼1 ∙ 𝛼2
2 ∙ 𝑓(𝐿𝑖,𝑦)) 

(13) 

(14) 

where 𝑃𝑆 - assessment of determination of pressure values in the node setup of the sensor, 𝑃𝑦   - 

assessment of determination of pressure values of the node-neighbor, 𝛼1 – the estimated error of 

determination of specific resistance of the pipeline, 𝛼2 - estimating the error of determining the values 

of water consumption, 𝑓(𝐿𝑖,𝑦) - is a function of the length of the pipeline section to the next node. 

The task is to arrange these sensors in the nodes in such a way that provides a minimum of the 

average value of the estimation of the uncertainty of pressure in the network (9). 

For the ZJ network, options for installing sensors in the number from 1 to 10 are considered, for the 

D-Тown network - from 1 to 20. Nodes with the highest centrality in the group are selected as sensor 

placement vertices. 

Solutions are considered: trial and error (TE), greedy algorithm (Gr), algorithms based on spectral 

clustering (SC). Algorithms based on spectral clustering (SC) are considered in the context of using 

various criteria: SCr - spectral clustering by Rcut criterion, SCn - spectral clustering by Ncut criterion, 

SCd - spectral clustering by Dcut criterion. The criteria to assess the effectiveness of the algorithms: 1) 

average uncertainty estimates (F), 2) number of iterations (∑ 𝐼𝑡𝑒𝑟), 3) elapsed time (T), 4) accuracy 

rate (1 − 𝛿̅), where δ is the relative error between the results of the considered algorithm and the 

algorithm of trial-and-error, 5) the highest relative error (max(δ)).  

Tables 3 and 4 show the results of calculating the performance indicators of the algorithms. The 

best accuracy scores are shown in bold. 
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Table 3. Performance indicators of algorithms (ZJ network). 

Indicator TE Gr SCr SCn SCd 

𝑭 0,571 0,590 0,572 0,570 0,570 

∑ 𝑰𝒕𝒆𝒓 1140 55 10 10 10 

Т, мин 18,9 0,6 1,7 1,8 1,8 

𝟏 − 𝜹̅, % 100,0 96,8 100,1 100,2 100,2 

max(𝜹),% 0,0 7,6 1,1 1,0 1,0 

 

Table 4. Performance indicators of algorithms (D-Тown network). 

Indicator TE Gr SCr SCn SCd 

𝑭 0,535 0,591 0,561 0,542 0,539 

∑ 𝑰𝒕𝒆𝒓 8140 210 20 20 20 

Т, мин 188,5 4,6 6,5 6,6 6,7 

𝟏 − 𝜹̅, % 100,0 89,5 95,2 98,7 99,3 

max(𝜹),% 0,0 17,4 9,8 7,3 3,2 

 

The solution obtained by the trial-and-error algorithm was chosen as the reference solution. The 

main problem of this algorithm is the necessary time and computational resources (1140 and 8140 

iterations take 18.9 and 188.5 minutes, respectively). The fastest (0.6 and 4.6 minutes) and at the same 

time less accurate is greedy algorithm (96.8% and 89.5%). Algorithms based on spectral clustering 

showed close to the reference result at low computational cost (about 1.7-1.8 and 6.5-6.7 minutes). 

The application of the Rcut criterion provides a solution with an accuracy of 100.1% and 95.2%, the 

Ncut criterion - 100.2% and 98.7%. The best results among the methods of spectral clustering for the 

Dcut criterion are 100.2% and 99.3% in relation to the results of the trial-and-error algorithm. 

Thus, the application of the proposed Dcut distance minimization criterion for graph decomposition 

allowed us to solve the problem of placing objects in the network with a high quality result, 

comparable and even better than spectral methods based on Rcut or Ncut criteria, which confirms the 

applicability of the Dcut criterion in spectral methods of graph clustering. 

5. Conclusion 

This article offers a look at the problems of solving the problems of placing objects in the network in 

the context of finding a solution in pre-defined subdomains obtained using the tools of the theory of 

spectral clustering of graphs by the criterion of minimizing distances in the desired subgraphs. The 

analysis of sources for solving the problem of placement in graphs, as well as methods of 

decomposition of graph structures are given. It is shown that many combinatorial problems on graphs 

can be solved with acceptable accuracy and in a short time, performing a search not in the entire set of 

graph elements, but on local sets grouped by a certain criterion. The proven theory of spectral 

clustering of graphs is proposed as a decomposition tool. Following the main provisions of this theory, 

the disadvantages of the applied criteria for splitting Rcut and Ncut are indicated. It is shown that the 

application of the Dcut distance minimization criterion proposed in this paper allows us to obtain good 

results when decomposing a graph. The obtained results are based on the examples of searching for 

sensor placement vertices in the known ZJ and D-Тown networks of the EPANET hydraulic modeling 

system.  

Further work will be aimed at studying the possibilities of applying the Dcut criterion in solving 

various combinatorial problems on graphs using spectral clustering methods. 
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