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Abstract 

Geographically weighted models are widely used for analyzing the spatial data. There is a problem of extracting a potentially lower number of 

unobserved variables while a set of correlated variables is observed. The factor analysis is commonly used to overcome this problem. A 

bandwidth selection is a main difficulty during the identification a spatial heterogeneity of factor loadings. In the paper an original bandwidth 

selection criterion is proposed. It is based on the testing the difference between factor loadings of global and geographically weighted model. 

Using the simulated data it is shown that the criterion proposed allows to define accurately the appropriate number of nearest neighbors. 
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1. Introduction 

Large amounts of spatial data that need to be processed is stored in modern geographic information systems. Thus, the issue 

of reducing the dimension of the attribute space occurs frequently. The most popular approaches in this field are the method of 

the principal components analysis (PCA) and exploratory factor analysis (EFA). 

Both the PCA and EFA, require homogeneity of observed data. This assumption is violated in cases where the observations 

depend on geographical factors. Thus, both similar and different degree of observed variables strength of casualty by latent 

factors in different geographic regions can be observed. Often some of its spatial properties are ignored in analyzing data process 

and just uses standard methods for reducing dimension. However, such effects are often important for a better understanding of 

investigated process, and PCA in this case may be replaced by geographically weighted PCA [1], when we want to explain a 

certain spatial heterogeneity in the data. 

At the same time, the idea of building a geographically weighted model does not transferred so easy to the method of 

principal component factor analysis. They have a number of substantial differences, and in fact, the purpose their use is different, 

in particular, load factors play the important role in the interpretation of the EFA results, reflecting the impact on the observed 

characteristics. For example, if there is a system of parameters, which are exposed to the same latent factor, the loads on the 

main factor point to the degree of formation of indicators based on this factor. 

In this paper, we used the idea of building a local model of EFA for geographically nearest neighbors (adaptive bandwidth). 

However, there is the problem of choosing the number of nearest neighbors. Authors of paper [2] that is devoted to 

geographically weighted PCA, propose criterion ‘goodness of fit’, based on the minimization of the residual sum of squares.  

This makes sense, since the aim of principal component analysis is to present indicators in the space of smaller dimension with 

the least information casualties. Here, for the factor analysis, we suggest a different criterion, which takes into account the 

significance of the differences of factor loadings of locally weighted and global models. This is more consistent with the aim of 

factor analysis. 

Further, the principal component analysis and factor analysis are described in more detail and explained the difference 

between them. Essence of geographical weighting is presented, the problem of bandwidth selection is described. A new criterion 

for selecting the number of nearest neighbors is proposed. Advantages of this approach were demonstrated by comparison with 

the existing criterion of goodness of fit in the simulation study. 

2. Geographically weighted variable reduction 

PCA and EFA are both variable reduction techniques and sometimes erroneously considered as the same statistical method. 

However, there are distinct differences between PCA and EFA. Further, mathematical description of these approaches is given, 

and we explain how they are adapted to spatial data analysis. 

2.1. Principal component analysis  

There are n observations of m variables, so a data matrix X  contains n  rows and m columns. The columns in X  are 

normalized with zero mean and unit variance. Then TR X X  is the correlation matrix for X . The matrix TX denotes the 
transpose of X . The matrix R  is a real symmetric matrix and its factorization into a canonical form is 

 TR   (1) 

where an orthogonal matrix   contains the eigenvectors of R , and   is a diagonal matrix which entries are the eigenvalues of
R . The eigenvalues of diagonal  imply the variances of the corresponding principal components. The eigenvectors in   are 
column vectors and represent the loadings of each variable on the corresponding principal component. 
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If the number of principal components equal to the number of variables, the decomposition (1) perfectly reproduces the 
correlation matrix R . By reduction m variables in q -dimensional sub-space ( q m ) the correlation matrix is represented as 

 Tˆ
q q q qR     

where q denotes the matrix  with the first q columns, i.e. the loadings on the first q  principal component, and q  is a 

diagonal which entries are the first q
 
eigenvalues of R . The principal components are sorted in decreasing order of eigenvalues 

so the first principal components keep the most important information from the data set. 

Component scores in q -dimensional sub-space are found by multiplying the original data matrix X  by loading matrix q . 

The best rank q approximation to X is Tˆ
q q qX X  . A standard result in linear algebra states that 

T T T

( ) ( )q q q q        

where ( )q  denotes the matrix  with the first q columns removed. 

To assess the quality of the reconstitution of X  with q  components, the dissimilarity between X and ˆ
qX  is usually evaluated. 

The error matrix is 

T T T

( ) ( )
ˆ

q q q q qE X X X X X          . 

The most popular coefficient used for evaluating the quality of PCA model is the residual sum of squares [3] 

 T

( ) ( )q q qRESS X    (2) 

where M is the square root of the sum of all the squared elements of the matrix M . 

Thus, mathematically, PCA depends on the eigen-decomposition of positive semidefinite matrices. Its main goal is to extract 

the important information from the data using the correlation between the variables and to represent it as a set of orthogonal 

principal components in the sub-space of lower dimension. 

2.2. Factor analysis 

This EFA model assumes that the relationship between the measured variables is due to the effect of some unobservable 

(latent) factors. The input information is a correlation matrix R  for all variables. It can be represented as [4] 

 TR     (3) 

where   is a factor loading matrix reflecting the relationship between the variables and factors,   is a correlation matrix of q  

factors,   is a covariance matrix of the unique factors.  

The presence of unique factors in EFA model (3) is the main difference from the model of PCA (1). It is due to the fact that 

extracted latent factors do not fully (with some errors) describe the correlation between the observed variables. Uniqueness is 

the variance that is ‘unique’ to the variable and not shared with other variables. The independence of unique factors is assumed, 

so the matrix   is a diagonal with uniqueness on the diagonal. 
The matrices  ,  ,   are estimated. In contrast to the PCA model the matrix   is of a particular interest, but loadings 

are not uniquely determined, so the rotation procedure is used, so that the resulting factor structure has a meaningful 
interpretation. With orthogonal rotation the independence between the latent factors is assumed. So matrix  is given as 
identity. There are a number of factor extraction methods for estimating loadings and uniqueness, for example, principal factor 
solution, minimum residual, maximum-likelihood method. 

Minimum residual method is based on ordinary least squares (OLS). The loss function is  

     
2

T, trOLSF R     . (4) 

Here  tr M  is the trace of a square matrix M . The OLS-estimates ̂ , ̂ are arguments at which the minimum of loss 

function (4) is achieved. 

2.3. Geographically weighted models 

The usage of local weighting as part of regression estimation initially was proposed by [5]. This approach is widely used in 
spatial data analysis [6] and known as geographically weighted model. 

Geographically weighted model identifies spatial differences in the relationship between factors by constructing a regression 
model at each control point for geographically closed observations. The proximity regulated by assigning larger weights to 
closest points and reducing weights for observations as they move away from the control point. Thus, the weight is determined 
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as a function of distance from the control point to the objects. The regression is estimated over the local subregion which 
volume is determined by the weight function parameter (a bandwidth).  

Regardless of the form of weight function specified, the local correlation matrix is 

 ( ) ( ) ( ) ( )Ti i i iR     (5) 

with respect to the local subregion of the i -th control point. The scores for the i -th control point on the m  variables are ( ) ( )i ix  

where ( )i
x  is a vector of variable values at i -th control point. 

Similarly geographically weighted EFA model is defined as 

 ( ) ( ) ( ) ( )T ( )i i i i iR       (6) 

and values of matrices ( )i , ( )i  are estimated with respect to the local subregion of the i -th control point. 

3. Criteria of bandwidth selection 

The choice of bandwidth value has a decisive influence on the estimation quality [6]. If someone takes bandwidth too large, 
then almost all observations will be included in the model, so it will be coincidental to the global model without geographical 
weighting. Thus it will not be possible to describe the change of the explanatory factors impact depending on the spatial location 
of the objects. Otherwise, too small bandwidth leads to the overfit problem: the model perfectly predicts the training data, but 
drastically fails on some new datasets. 

The choice of a bandwidth parameter cannot be based on the common fitting indicators (like R-squared, the mean square 
error, etc.). So for optimal bandwidth selection the cross-validation technique is often used when the training and quality 
evaluation both produced on the distinct sample data [7]. There are some other approaches to solve this problem, for instance, 
Akaike information criterion [7], and the Lagrange multiplier test [8]. 

In recent studies on the bandwidth selection [8, 9] for geographically weighted models two essentially different methods to 
the weighting function construction are considered: 

• with a fixed local area radius; 

• with a given number of nearest neighbors. 

The second one is considered to be adaptive because it allows adjusting to varying density of the spatial location of the 
objects. Thus in the neighborhood of one control point the objects may be more concentrated than for the other points where 
they are more distant from each other. In such cases the latching of the local area radius leads to the fact that for some control 
points the regression will be estimated on a very large number of observations, for the others – on very small. 

We selected the adaptive approach. Therefore, the task is to determine the optimal number of nearest neighbors, taking into 
account features of EFA. 

3.1. Goodness of fit statistic 

The criterion ‘goodness of fit’ is proposed for geographically weighted PCA model construction (see [2]). The criterion is 
based on the minimization of the residual sum of squares. It is calculated by the formula (2) for a global model. For a local PCA 
model (5) the residual sum of squares at the i -th control point is 

( ) ( ) ( ) ( )T

( ) ( )

i i i i

q q qRESS X     

where a superscript ( )i  denotes the values that are calculated in a local subregion of the i -th control point. The values of the 

residual sum of squares are summed for all the control points to calculate the goodness of fit statistics: 

( )

1

n
i

q
i

GOF RESS


  . 

A set of control points can be selected in different ways. Leave-One-Out Cross-Validation (LOOCV) is the simplest 
procedure for cross-validation. It suggests that only one observation is selected as a control point from the data set, while other 
observations are considered as a training sample. The procedure is repeated until all the objects will be alternately selected as 
control points. The advantage of this approach is a computational speed. Often the model structure based on LOOCV leads to 
the overfitting problem and the forecast error underestimation [10]. In our case the bandwidth parameter may cause such 
problems.  

The more complicated procedure is a Monte-Carlo cross-validation (MCCV) [10]. It assumes that the whole sample is 
separated randomly into training and check samples. Nevertheless, this choice could increase the computational time. Therefore, 
we have chosen LOOCV procedure. 
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3.2. Test the difference between global and local factor loadings 

There are some problems with usage the cross-validation technique for evaluating the quality of EFA models. It is mainly 

used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in 

practice. The task of variable reduction is not quite a prediction. Of course, we can use the loss function qRESS  for PCA, and 

 ,OLSF   for EFA. But goodness of fit is not so important for EFA, the loadings are more interesting. For this reason a new 

criterion for bandwidth selection is proposed. It is based on testing the difference between global and local factor loadings.  

A statistical inference for comparing global and local factor loadings is based on the information about mean values of 

loadings and their standard deviation. We need replications of sample data to get this information. One way to get it is to take a 

sample of the same size n  from the rows of data matrix X  with replacement. Let we have L  replications of sample data. For 

each l th replication we estimate loading matrix l  of global EFA model (3) and loading matrix ( )i

l  of the geographically 

weighted EFA model (6). We can calculate matrices containing the average values of loadings for all replications 

( ) ( )

1 1

1 1
,

L L
i i

l l l l
l lL L

   
 

   . 

The ,k j th elements of matrices l  and ( )i

l  are denoted by  kjm   and  ( )i

kjm  .  

Similarly, we can calculate the variance of loadings for all replications. Let us denote them as  kjv   and  ( )i

kjv  . So the test 

statistic comparing the means is well known. It is given by 

 
   

   

( )

( )

( )1

i

kj kji

kj
i

kj kj

m m
SS

L v v

 

 





. (7) 

We propose the significance test statistics for optimal bandwidth selection 

 ( )

1 1 1

1 qn m
i

kj
i j k

SS SS
n q m   

   
 

. (8) 

The maximum value of the significance test statistics (8) corresponds to the optimal number of nearest neighbors. On the one 

hand it is evident that for the global model (maximum number of nearest neighbors) the numerator of (7) will be minimal, and 

vice versa. So we would expect that the geographically weighted EFA model with the smallest number of nearest neighbors will 

be the best by test statistics (7). But on the other hand a small number of nearest neighbors results in very large loadings 

variation. Thus, the denominator of (7) will increase with a decrease of the number of nearest neighbors. Essentially the 

significance test statistics (8) is a trade-off between differences in the average factor loadings and their variation. 

To calculate statistics (8) we need to compare multiple EFA models. These comparisons require columns of factor loading 

matrices to be properly aligned. However, the most rotation criteria do not uniquely define a factor loading matrix. This is 

referred to an alignment problem [4]. The most popular method for aligning a factor loading matrix against another is to 

minimize the sum of squared differences of factor loadings in the two matrices. Further, in simulation study, this approach was 

used. We compared the dissimilarity of loading column of global EFA model and one of local models, initial and with the 

opposite sign. Column reflection (an operation when the signs of values in column are replaced with the opposite) of original 

column was carried out in cases when reflected loading column corresponded to less value of sum of squared deviations. 

There are some problems with the calculation of the statistics (8). Firstly, it is necessary to conduct the Ln-fold factor 

analysis. With a large number of control points and repeated replications, this procedure takes a very long time. A smaller 

number of control points can be taken to reduce the calculation time. Another way is to replicate the sample using the jackknife 

method. However, the decrease in the number of replications may result in loss of the quality of an optimal bandwidth selection. 

Secondly, factors can be extracted using various methods. There is a problem with the starting values during the optimization 

of the log likelihood. The uniqueness is technically constrained to lie in [0, 1], but there are some problems with near-zero 

values, and the optimization is typically done with a lower bound of 0.005. Sometimes it is unable to optimize the likelihood 

from certain starting value, because the algorithm does not converge. If we try to increase or decrease the lower bound for 

uniqueness during the optimization, it allows a solution to be converged. However, such lower bound selection is practically not 

efficient in the case of Ln-fold factor analysis. So more simple factoring methods should be used. 

The method of principal axes may be used in the cases when maximum likelihood solutions fail to converge. However, it is 

based on the iterative algorithm, so it works rather slowly. If the procedure of factor analysis is repeated many times, the speed 

of implementation of the factoring procedure is very important. Therefore, optimization procedures are more preferable. In 

addition, they produce even better solutions for some examples. Minimum residual method based on OLS usually has no 

problems with convergence and tends to produce better solutions. 
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Further, two approaches to the bandwidth selection are compared in a simulation study. For identification of PCA and EFA 

models one can use statistical packages, for instance, the free software for statistical analysis R [11]. The function princomp 

{stats} performs a principal components analysis on the given numeric data matrix, function efa{EFAutilities} performs 

exploratory factor analysis. The algorithms of optimal bandwidth selection are implemented using R. 

4. Simulation study 

The main purpose of the simulation study is concluded in comparison of approaches mentioned above in precision of the 
bandwidth selection. A simple one-factor model was chosen. The factor F  is standard normally distributed. It affects on three 
variables 1 2 3, ,x x x . So the EFA model has the form 

1 1 1

2 2 2

3 3 3

,

,

x b F

x b F

x b F







 


 
  

 

where 1b  are factor loadings, 1 2 3, ,    are random errors. The simulated random error i  was chosen as a normally distributed 

variable with variance that equals to 2 20.8 ib . 

Real geographic objects were used for modeling spatial heterogeneity, namely, cities of the Russian Federation within six 
federal districts: Central Federal District (CFD), Northwestern Federal District (NWFD), Volga Federal District (VFD), Ural 
federal district (UFD), Siberian Federal District (SFD), Far Eastern Federal District (FEFD). 50 cities per each federal district 
were randomly chosen. Thus, the sample size was 300n  . The true value of number of nearest neighbors is 50. Spatial 
differences were set in two ways. 

Model 1. Equal loadings were set for all cities in the same federal district. Their values are shown in Table 1 and are 
presented graphically in Figure 1 using pie charts. 

 

Fig. 1.  Geographical variations of the factor loadings for model 1. 

Model 2. Loadings were defined for each city as the weighted average loadings of federal centers given in Table 1 with 

weights calculated as inverse distance to the center. Distances between cities were determined based on their geographical 

coordinates by the formula of a distance between two points on a sphere. Resulting loadings are graphically presented in Figure 

2. It can be seen that spatial differences are not so obvious in comparison with the model 1. We can expect that it is more 

difficult to determine an optimal number of nearest neighbors for the model 2. 

Note that the differentiation of loadings by Federal Districts corresponds to real world problem. Factor loading values were 

obtained from the regional analysis of the correlation structure of universities’ efficiency indicators. So the observed variables 

can be interpreted as 

 1x  is a financial and economic activity; 

 2x  is a level of wages of the teaching staff; 

 3x  is an employment. 

 



Information Technology and Nanotechnology – 2017 

Image Processing and Geoinformation Technology       668 

Table 1. The true values of factor loading 

Factor loadings CFD NWFD VFD UFD SFD FEFD 

1b  0.37 0.32 0.25 0.57 0.58 0.71 

2b  0.43 0.18 0.49 0.16 0.32 0.28 

3b  0.2 0.5 0.26 0.27 0.1 0.01 

Center Moscow St. Petersburg Nizhny 
novgorod 

Yekaterinburg Novosibirsk Khabarovsk 

 

 
Fig. 2.  Geographical variations of the factor loadings for model 2. 

5. Results and discussion 

The values of goodness of fit statistics and significance test statistics were calculated on the simulated data for fixed number 

of nearest neighbors. The number of nearest neighbors was set from 20 to 80. Figure 3 shows the resulting values of statistics. 

The true number of nearest neighbors that equals 50 is indicated by a dashed line. 

It is clearly seen that the significance test statistics proposed determines the number of nearest neighbors more accurately for 

both model 1 and model 2. In the first case the goodness of fit criterion gives an optimal number of nearest neighbors of 43, 

while the significance test statistics reaches a maximum value when the number of nearest neighbors is 52. In the second more 

complicated case a minimum value of the goodness of fit statistic is provided by the number of nearest neighbors of 57, the 

significance test criterion gives the best result of 55 nearest neighbors. 

It should be noted that values of the goodness of fit statistics vary greatly. We see a lot of local minima and maxima. This 

fact complicates the use of optimization routines to find the best values of the bandwidth. At the same time, the dependence of 

the significance test statistics on the number of nearest neighbors appears smoother. This fact allows us to develop more 

effective optimization algorithms than direct-search method on the grid. 

We note that the results presented are obtained only for one random sample. Unfortunately, averaging over a large number of 

replications is difficult to perform, since a repeated implementation of the procedure of PCA or EFA requires a considerable 

amount of computer time. Preliminary studies of goodness of fit statistics have shown that, on average, the optimal number of 

nearest neighbors is quite different from the true value. The selected number of nearest neighbors was set from 20 to 150 with 

the step of 10. The results were averaged over 100 random samples. The optimal value of bandwidth corresponded to the 

number of nearest neighbors with the minimum value of goodness of fit statistics. The median of an optimal bandwidth was 

found to be 70. The first quartile turned out to be 30, the second one was found to be 130. Thus, in general, when the goodness 

of fit statistics is used, the bandwidth is not accurately determined. Although more detailed studies are required to refine these 

results. 
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NUMBER OF NEAREST NEIGHBORS NUMBER OF NEAREST NEIGHBORS 

(a) (b) 

Fig. 3.  The dependence on the goodness of fit statistics and the significance test statistics on the number of nearest neighbors  

for model 1 (a) and model 2 (b). 

6. Conclusion 

In the paper we propose an original criterion to determine the bandwidth for geographically weighted factor analysis 
estimation. For this purpose the authors developed a software implementation using the statistical framework R. The 
investigation of the accuracy of the criterion that determines the optimal number of neighbors is based on the results of the 
experiments. They show that proposed significance test statistics determines the optimal number of nearest neighbors more 
accurately. Furthermore the dependence of significance test statistics on the number of nearest neighbors appears smoother. This 
makes it possible to develop more effective optimization algorithms for automatic bandwidth selection. 
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