
Gaussian filtering for FPGA based image processing

with High-Level Synthesis tools

O.S. Shipitko1, A.S. Grigoryev1

1Institute for Information Transmission Problems (Kharkevich Institute) – IITP RAS, Bol’shoy
Karetnyy per. 19, Moscow, Russia, 127051

Abstract. With the gradual improvement and uprising interest from the industry to High-Level
Synthesis tools, like Vivado HLS form Xilinx, Field Programmable Gate Arrays are becoming an
attractive option for accelerator architecture in image processing domain. However, an efficient
high-level design still requires knowledge of hardware specifics. A great amount of image
processing operations falls into a group of convolution-based operators - operators which result
depends only on a particular pixel and its neighborhood and obtained by performing a
convolution between a kernel and a part of an image. This paper investigates the impact of
factors, such as kernel size, target frequency, convolution implementation specifics, floating-point
vs. fixed-point filter kernel, on resulting register-transfer level design of convolution-based
operators and FPGA resources utilization. The Gaussian filter was analyzed as an example of a
convolution-based operator. It is shown experimentally that floating-point operators require a
noticeably larger amount of resources, rather fixed-point once. Resulting clock frequency
independence from kernel size is demonstrated as well as the number of used flip-flops grows
with the increasing target clock frequency is investigated in this work.

Keywords: Keywords: FPGA, High-level synthesis, Image processing, Gaussian filter.

1. Introduction
Field Programmable Gate Arrays (FPGAs) gain an increasing popularity as an accelerator
platform in various fields [1]. Image processing is not an exception. FPGA proved to be
a suitable option for many image processing applications where severe performance, energy
efficiency, and power requirements are imposed [2, 3, 4]. However, the efficient FPGA design is
a non-trivial task which requires a long development period and, in case of image processing, deep
understanding of both software algorithms development and hardware design [5, 6]. Introduction
of High-Level Synthesis (HLS) made possible to synthesize register-transfer level (RTL) hardware
design for FPGA directly from the high-level software description, reducing development time
and required hardware knowledge [7, 8]. The fundamental challenges existing HLS compilers
still have to overcome are discussed in [9]. Even though for particularly structured code, modern
HLS tools can generate designs that comparable in performance with hand-coded RTL in terms
of both resources and processing speed [7, 10], the software still has to be written in a particular
way to enable automatic control and data flow identification and parallelizing [11]. For instance,
it is not obvious how different software implementation-specific factors affect the efficiency of
the hardware design. Thus, the goal of this work is to conduct a study aimed at evaluation of
implementation specifics (kernel size, its type etc.) impact on a resulting RTL design.

The rest of the paper is structured as follows: section 2 presents the sliding window
architecture used for efficient implementation of image processing pipeline. Section 3 describes
conducted experiments and discusses obtained results.

Науки о данных O.S. Shipitko, A.S. Grigoryev

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018) 2922

2. Sliding window architecture
In order to develop an efficient image processing algorithm for FPGA stream-based processing
has to be exploited [5]. Typical streaming architecture is built using a combination of row buffers
(line buffers) – elements able to store one row of image and window buffers – 2D arrays able to
store a local area of an image required for computation of current output pixel. The combination
of these two data structures allows reading input image/video pixel by pixel, optimizing the usage
of FPGAs limited memory. As a result, minimal amount of pixels required for computation of
the filtered value of the current pixel is stored at the time. The minimal required amount of
line buffers may be estimated as H − 1, where H denotes a vertical size of a kernel of a local
operator being used. Window buffer has to have the same size as a kernel. Thus, for instance,
for Gaussian filter with the kernel 3x3, the optimal implementation will require 2 line buffers
and 3x3 window buffer. The overall architecture is shown in figure 1.

a)
b)

Figure 1. Sliding window architecture (a) and step-by-step line buffer and sliding window
filling (b).

3. Results and discussion
This section presents a comparison of several Gaussian filter implementations, their efficiency,
and corresponding FPGA resources utilization. All synthesis results, presented in this section,
were obtained with single color 8-bit per pixel images. The image size has been set to 1080 x
1920 pixels. As a target FPGA the ZC702 Evaluation board based on the XC7Z020 CLG484-1
All Programmable SoC device was used. All presented in this paper experiments were conducted
with Vivado Design Suite HLx Editions of version 2016.2.

Four different types of filters were implemented for further analysis: (a) Implementation using
sliding window architecture presented in figure 1 and implemented with C-language arrays;
(b) Implementation using HIPAcc framework [12, 13]; (c) Implementation similar to (a), but
using data structures (window buffer, line buffer) provided by Vivado Video Library instead of
standard C arrays.

HIPAcc – the Heterogeneous Image Processing Acceleration Framework developed by Richard
Membarth and Oliver Reiche, allows to design image processing kernels and algorithms in a
domain-specific language (DSL). It was used in this work in order to verify developed Gaussian
filter.

3.1. Kernel size
For each of the implementations described above, different kernels were tested. Kernels are
presented in figure 2. Resource usage comparison for different kernels is presented in tables 1, 2
and 3.

Науки о данных O.S. Shipitko, A.S. Grigoryev

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018) 2923

Figure 2. Discrete approximation of the Gaussian kernels 3x3, 5x5, 7x7.

Table 1. Comparison of different kernel sizes for implementation (a)

Kernel size LUT FF DSP BRAM Latency (cycles) Freq [MHz]
3X3 309(0%) 478(0%) 1(0%) 2(0%) 2073606 178
5X5 724(1%) 1200(1%) 7(3%) 4(1%) 2073615 178
7X7 838(1%) 1923(1%) 24(10%) 6(2%) 2073619 178

Table 2. Comparison of different kernel sizes for HIPAcc implementation (b)

Kernel size LUT FF DSP BRAM Latency (cycles) Freq [MHz]
3X3 1409(2%) 1563(1%) 0(0%) 2(0%) 2076640 157
5X5 1372(2%) 1736(1%) 0(0%) 4(1%) 2079620 268

Table 3. Comparison of different kernel sizes for implementation (c)

Kernel size LUT FF DSP BRAM Latency (cycles) Freq [MHz]
3X3 319(0%) 543(0%) 1(0%) 2(0%) 2073606 178
5X5 726(1%) 1320(1%) 7(3%) 4(1%) 2073615 178

As it might be seen from the results, the system with a bigger kernel uses much more
resources but performs the operation at approximately the same time as the system with
a smaller kernel. However, it is not the case for HIPAcc implementation, since it performs
operations with bigger kernels faster than with smaller once. It is also notable that, the developed
architecture (a) outperforms HIPAcc implementation with kernel size 3x3, but loses tremendously
in clock frequency with bigger kernel sizes. Usage of data structures provided by Vivado Video
Library doesnt bring any improvements in performance, however, it simplifies and speeds up the
development process, providing convenient templates of line and window buffers and functions
to work with.

3.2. Clock frequency vs. flip-flops number
It is known that the number of used flip-flops increases with the increasing target frequency
[7]. The maximum frequency is limited by the longest path data has to take in one clock cycle.
To shorten the longest path Vivado HLS compiler inserts additional flip-flops, trying to reach
target frequency specified by a programmer. Figure 3 shows the dependency of used flip-flops
vs. target clock frequency.

Науки о данных O.S. Shipitko, A.S. Grigoryev

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018) 2924

Figure 3. Clock frequency vs. flip-flop number for fixed-point filter implementation.

3.3. Floating-point vs. fixed-point implementation
Two 3x3 kernels presented on figure 4 were compared. The results of the comparison are shown
in table 4.

Figure 4. Floating-point Gaussian kernel (on the left) and its discrete approximation (on the
right).

Table 4. Floating-point vs. fixed-point implementation

Kernel type LUT FF DSP BRAM Latency (cycles) Freq [MHz]
Fixed 309(0%) 478(0%) 1(0%) 2(0%) 2073606 178

Floating 20656(38%) 17724(16%) 46(20%) 2(0%) 2073818 157

Fixed-point implementation uses much less resources and performs filtering faster than
floating-point implementation. However, it should be noted that discrete approximation of
the filter's coefficients implies accuracy losses, which might be crucial for some applications.

3.4. Different ways to perform convolution
Three different convolution implementations, presented in listing 1, listing 2, and listing 3,
were tested in a combination with two different kernel sizes (3x3, 5x5). These implementations

Науки о данных O.S. Shipitko, A.S. Grigoryev

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018) 2925

hereinafter referred as Impl1, Impl2 and Impl3 accordingly. The goal of the experiment is to
force HLS compiler to optimize a convolution function to produce a balanced adder tree which
is known to be an optimal structure for operations requiring summation with accumulation
[11]. Balanced adder tree reduces the area of a design by minimizing the latency, which in turn
reduces the number of registers used. The result of the comparison is presented in the tables 5
and 6.

Listing 1: Impl1.

1 for (int i=0; i < WINDOW_SIZE; i++) {

2 for (int j=0; j < WINDOW_SIZE; j++) {

3 new_pix += window[i*WINDOW_SIZE+j] * gauss_kernel[WINDOW_SIZE -i][WINDOW_SIZE -j];

4 }

5 }

Listing 2: Impl2.

1 new_pix += window [0];

2 new_pix += window [1] * 2;

3 new_pix += window [2];

4 new_pix += window [3] * 2;

5 new_pix += window [4] * 4;

6 new_pix += window [5] * 2;

7 new_pix += window [6];

8 new_pix += window [7] * 2;

9 new_pix += window [8];

Listing 3: Impl3.

1 new_pix = window [0] + window [1]*2 + window [2] + window [3]*2 + window [4]*4 +

2 window [5]*2 + window [6] + window [7]*2 + window [8];

Table 5. 3x3 kernel

Implementation LUT FF DSP BRAM Latency (cycles) Freq [MHz]
Impl1 309(0%) 478(0%) 1(0%) 2(0%) 2073606 178
Impl2 306(0%) 470(0%) 1(0%) 2(0%) 2073606 178
Impl3 306(0%) 470(0%) 1(0%) 2(0%) 2073606 178

Table 6. 5x5 kernel

Implementation LUT FF DSP BRAM Latency (cycles) Freq (MHz)
Impl1 724(1%) 1200(1%) 7(3%) 4(1%) 2073615 178
Impl2 604(1%) 1039(0%) 4(1%) 4(1%) 2073614 178
Impl3 604(1%) 1039(0%) 4(1%) 4(1%) 2073614 178

As it might be seen from the results, there is almost no difference between these three
approaches. The reason is that Vivado HLS tries to build a balanced tree structure out of
a number of related additions that can be scheduled in parallel if a directive telling the compiler
to unroll loops is specified. Thereby, the results are proving that the Vivado HLS is able to
construct a balanced adder from all three forms of convolution functions.

Науки о данных O.S. Shipitko, A.S. Grigoryev

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018) 2926

4. Conclusion
Although using of HLS can simplify and accelerates the development of FPGA-based
applications, it is still requires careful design space exploration. It is crucial to remember
that existing HLS tools do not provide full abstraction and the result of the development is not
software but hardware. The efficiency of resulting FPGA solution and its resources utilization
depends heavily on many factors which have to be taken into account on the programming
stage. Floating-point operations implemented on FPGA are usually inefficient and consume a
tremendous amount of resources, therefore should be avoided. Kernel size doesn’t affect clock
frequency and just increases the number of resources required for storing bigger kernel and
temporary image areas. A number of used flip-flops grows rapidly with the increasing target
clock frequency and generally bigger for bigger kernels. Therefore a trade-off between target
speed and resources utilization should be considered by a developer. A benefit achieved with
the use of vendor-provided libraries has to be noted. They provide convenient abstractions
usually at no additional resources cost. Thus, for instance, window and line buffers from Vivado
Video Library might be used as an alternative to hand-programmed data structures. Results
obtained in this work might be extended to any convolution-based image processing operator
implemented on FPGA with HLS.

5. References
[1] Berry, P.C.F. Design of an Imaging System based on FPGA Technology and CMOS Imager //
IEEE Field Programmable Technology, 2004.
[2] Dias, F., Berry, F., Srot, J., Marmoiton, F. Hardware, design and implementation issues on a
FPGA-based smart camera // Distributed Smart Cameras. First ACM/IEEE International
Conference. - 2007. - P. 20-26.
[3] Mosqueron, R., Dubois, J., Paindavoine, M. High-speed smart camera with high resolution //
EURASIP Journal on Embedded Systems. - 2007. - Vol. 1. - P. 23-23.
[4] Hu, Y., Prasanna, V. K. Energy-efficient parameterized 2-D separable convolution on FPGA // Green
Computing Conference International (IGCC), 2014. - P. 1-10.
[5] Bailey, D.G. Design for embedded image processing on FPGA // John Wiley & Sons, 2011.
[6] Lim, Y.K., Kleeman, L., Drummond, T. Algorithmic methodologies for FPGA-based vision //
Machine vision and applications. - 2013. - Vol. 24(6). - 1197-1211.
[7] BDTI. High-level synthesis tools for Xilinx FPGAs. Technical report, Berkley Design Technology
Inc., 2010.
[8] Page, I. Closing the gap between hardware and software: hardware-software cosynthesis at
Oxford, 1996.
[9] Bailey, D.G. The advantages and limitations of high level synthesis for FPGA based image
processing // Proceedings of the 9th International Conference on Distributed Smart Cameras, 2015. - P. 134-139
[10] Winterstein, F., Bayliss, S., Constantinides, G. A. High-level synthesis of dynamic data structures:
A case study using Vivado HLS // Field-Programmable Technology (FPT) International Conference on IEEE,
2013. - P. 362-365.
[11] Fingeroff, M. High-level synthesis: blue book. Xlibris Corporation, 2010.
[12] Membarth, R., Reiche, O., Hannig, F., Teich, J., Krner, M., Eckert, W. Hipa cc: A domain-specific
language and compiler for image processing // IEEE Transactions on Parallel and Distributed Systems. -
2016. - Vol. 27(1). - P. 210-224.
[13] Reiche, O., Zkan, M. A., Membarth, R., Teich, J., Hannig, F. Generating FPGA-based Image
Processing Accelerators with Hipacc.

Науки о данных O.S. Shipitko, A.S. Grigoryev

IV Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2018) 2927

