Формирование массива фотонных наноструй ступеньками с квадратным профилем

В.Д. Зайцев¹, С.С. Стафеев^{1,2}

¹Самарский национальный исследовательский университет им. академика
 С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086
 ²Институт систем обработки изображений РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, Молодогвардейская 151, Самара, Россия, 443001

Аннотация. Моделирование методом конечных разностей во временной области (FDTD) с помощью программного пакета FullWAVE фокусировки гауссова пучка шириной 5,4 мкм и длиной волны 0,633 мкм с помощью бинарной дифракционной решетки из кварцевого стекла (показатель преломления 1,46) показало, что отдельные ступеньки рельефа вблизи своей выходной поверхности формируют области повышенной интенсивности – фотонные наноструи. При этом такие фотонные наноструи искривляются при наклоне волнового фронта.

1. Введение

Большое количество работ в современной оптике и нанофотонике посвящены фокусировке лазерного излучения в субволновую область. Решением такой задачи, в частности, является фокусировка света с использованием различных оптических элементов, например микроцилиндра [1] или диэлектрической микросферы. Одной из первых экспериментальных работ по субволновой фокусировке света микросферами является работа [2], в которой микросферы с диаметром 0,5 мкм, изготовленные из кварца, фокусировали свет на подложку из кремния и выплавляли в ней столбики шириной 100 нм. В [3] был предложен похожий механизм получения микрорельефа: микросфера диаметром 1 мкм захватывалась в оптическую ловушку Бесселевым пучком с длиной волны 532 нм, перемещалась в заданную точку, а после, в подложке прожигалось углубление при помощи импульсного лазерного излучения с длиной волны 355 нм, и перемещалась далее в следующую точку. В [4] была теоретически исследована фокусировка света микрошарами – было показано, что микросфера с диаметром 1 мкм (показатель преломления n = 1,59), освещаемая плоской волной с длиной $\lambda = 400$ нм, создает фокусное пятно с диаметром в плоскости, перпендикулярной направлению поляризации, равным full width at half maximum (FWHM) = $0,325\lambda$. В этой же работе [4] было предложено специальное название фокуса, создаваемого микросферами – фотонная наноструя. Экспериментальное наблюдение фотонной наноструи было осуществлено в работе [5], где латексные микросферы диаметром 1 мкм, 3 мкм и 5 мкм, освещённые плоской волной с длиной 520 нм, создавали фокусы с диаметрами 0,622; 0,522 и 0,582. Однако, несмотря на субволновый диаметр фотонных наноструй, полученных эксперементально, преодоление дифракционного предела не было продемонстрировано. Еще одна характеристика фотонной наноструи - её длина (глубина фокусировки) исследовалась в [6, 7]. В [6] численно показано, что при использовании градиентной микросферы, в которой показатель преломления меняется линейно

от 1,43 до 1,59, можно увеличить длину фотонной наноструи, при этом глубина фокусировки DOF (depth of focus) равна 11,8λ. В [7] задача была обратной – уменьшение длины фотонной наноструи. Для этого микросфера радиусом 2,5х освещалась гауссовым пучком, сфокусированным широкоапертурной линзой с числовой апертурой NA≈ 1. Длина образованной фотонной наноструи составила в этом случае DOF = 0,88λ. Заметим, что, помимо микросфер. известны работы по формированию фотонных наноструй другими диэлектрическими микрообъектами, например, микроцилиндрами [8], дисками [9], кубиками [10], коническими микроаксиконами [11]. Однако, применение сферы для фокусировки затруднительно, т.к. сфера должна удерживаться (например, в [3] с помощью световой ловушки). Более технологичным представляется изготовление фокусирующего элемента на подложке. Если сделать на такой подложке с обратной стороны антиотражающее покрытие, то эффективность при фокусировке будет выше, чем у микросферы соответствующего диаметра. Бинарные дифракционные решётки представляют особый интерес ввиду простоты их изготовления методами литографии; бинарный рельеф формируется за одно травление подложки. Фотонные наноструи, формируемые решетками, исследовались раннее в работах [12-15]. Так в [12] исследовалось три вида решеток: с пилообразным профилем, прямоугольным и полусферическим. Все три типа решеток показали различные результаты, так пилообразный профиль позволяет сфокусировать излучение с максимальной интенсивностью, решетки с прямоугольным профилем сознают более узкую фотонную нанострую, а решетки с полусферическим профилем формируют наиболее удаленную и одновременно самую длинную фотонную струю. В [13] показано, что характеристики массива наноструй можно контролировать и изменять с помощью изменения длины волны падающего излучения. Длина и ширина фотонных наноструй увеличивается соответственно увеличению длины падающей волны. Также, чем больше длина волны, тем ближе располагается наноструя к поверхности. В [14] исследуются решетки с различным периодом с помощью метода конечных элементов в программном пакете COMSOL Multiphysics. В [15] с помощью размещения у основания зубца дифракционной решетки золотой пластины (в центре 50% перекрытия) удалось получить множественную интенсивную фокусировку с преодолением дифракционного предела и минимальной потерей энергии.

В данной работе рассмотрена фокусировка гауссова пучка с шириной ω =5,4 мкм и длиной волны λ = 633 нм бинарной дифракционной решеткой из кварцевого стекла (показатель преломления n = 1,46) с периодом 600 нм и высотой рельефа 500 нм. Было продемонстрировано, что отдельные ступеньки рельефа вблизи своей выходной поверхности формируют области повышенной интенсивности – фотонные наноструи. При этом такие фотонные наноструи искривляются при наклоне волнового фронта, освещающего их пучка.

Рисунок 1. Распределение интенсивности света, прошедшего через ступеньку с шириной 600 нм и высотой 500 нм.

2. Моделирование фокусировки света одиночной ступенькой

Данное моделирование проводилось с помощью метода FDTD (finite-difference time-domain), реализованного в программе FullWAVE. Размер сетки по пространству составлял 0,012 мкм,

т.е. около $\lambda/53$. Моделирование проводилось для одинарной ступеньки из кварцевого стекла (показатель преломления n = 1,46) с шириной 600 нм и высотой 500 нм. Эта ступенька (столбик) освещалась гауссовым пучком с шириной $\omega=2$ мкм и длиной волны $\lambda = 633$ нм. Результат моделирования представлен на рис. 1.

Из рисунка 1 видно, что непосредственно за ступенькой формируется область повышенной интенсивности – фотонная наноструя. Ширина полученной фотонной струи была равна 0,23 мкм, а интенсивность излучения, после прохождения через кварцевую ступеньку (*n*=1,46), возросла в 8,6 раз.

3. Моделирование прохождения света через дифракционную решетку

Моделирование прохождения света через дифракционную решетку проводилось также с помощью метода FDTD, реализованного в программе FullWAVE. Размер сетки по пространству составлял 0,031 мкм, т.е. около $\lambda/20$. Моделирование проводилось для бинарной дифракционной решетки из кварцевого стекла (показатель преломления n = 1,46) с периодом 600 нм и высотой рельефа 500 нм. Входящее излучение представляет собой следующую функцию:

$$E_0 = e^{-\frac{x^2}{w^2}}$$

Бинарная решетка освещались гауссовым пучком шириной ω =5,4 мкм и с длиной волны λ = 633 нм. Высота рельефа была одинакова и равна 500 нм. Решетка находилась на расстоянии 5 мкм от плоскости перетяжки гауссова пучка, чтобы волновой фронт пучка успел приобрести кривизну вследствие распространения. Результат моделирования показан на рис. 2.

На рисунке 2 видно, что интенсивность излучения центрального фокуса после прохождения решетки возрастает в 9,3 раза по сравнению с входящим излучением, а из рисунка 26 можно заметить, что боковые фотонные наноструи отклоняются в сторону от центра.

4. Заключение

В данной работе рассмотрена фокусировка гауссова пучка шириной 5,4 мкм, с длиной волны 633 нм бинарной дифракционной решеткой из кварцевого стекла (показатель преломления 1,46) с периодом 600 нм и высотой рельефа 500 нм. Было продемонстрировано, что отдельные ступеньки рельефа вблизи своей выходной поверхности формируют области повышенной интенсивности – фотонные наноструи (диаметр отдельной наноструи был равен 0,22 мкм). При этом такие фотонные наноструи искривляются при наклоне волнового фронта, освещающего их пучка

5. Благодарности

Работа выполнена при поддержке Российского научного фонда (грант 18-19-00595) в части «Моделирование фокусировки света одиночной ступенькой» и Российского фонда

фундаментальных исследований (грант 18-07-01122 в части «Моделирование прохождения света через дифракционную решетку» и грант 18-07-01380 в части «Введение»).

6. Литература

- [1] Kozlova, E.S. Simulation of light focusing by two-layer microcylinder // Journal of Physics. 2018. Vol. 1038. P. 012078.
- [2] Lu, Y.F. Laser Writing of a Subwavelength Structure on Silicon (100) Surfaces with Particle-Enhanced Optical Irradiation / Y.F. Lu, L. Zhang, W.D. Song, Y.W. Zheng, B.S. Luk'yanchuk // JETP Letters. – 2000. – Vol. 72(9). – P. 457-459.
- [3] McLeod, E. Subwavelength direct-write nanopatterning using optically trapped microspheres / E. McLeod, C.B. Arnold // Nature Nano. 2008. Vol. 3. P. 413-417.
- [4] Li, X. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets / X. Li, Z. Chen, A. Taflove, V. Backman // Optics Express. – 2005. – Vol. 13(2). – P. 526-533.
- [5] Ferrand, P. Direct imaging of photonic nanojets / P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, H. Rigneault // Optics Express. – 2008. – Vol. 16(10). – P. 6930-6940.
- [6] Kong, S.-C. Quasi one-dimensional light beam generated by a graded-index microsphere / S.-C. Kong, A. Taflove, V. Backman // Optics Express. 2009. Vol. 17(5). P. 3722-3731.
- [7] Devilez, A. Three-dimensional subwavelength confinement of light with dielectric microspheres
 / A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, E. Popov // Optics
 Express. 2009. Vol. 17(4). P. 2089-2094.
- [8] Chen, Z. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique / Z. Chen, A. Taflove, V. Backman // Optics Express. – 2004. – Vol. 12(7). – P. 1214-1220.
- [9] McCloskey, D. Low divergence photonic nanojets from Si3N4 microdisks / D. McCloskey, J.J. Wang, J.F. Donegan // Optics Express. – 2012. – Vol. 20(1). – P. 128-140.
- [10] Kotlyar, V.V. Photonic nanojets generated using square-profile microsteps / V.V. Kotlyar, S.S. Stafeev, A. Feldman // Appl. Opt. 2014. Vol. 53. P. 5322-5329.
- [11] Zaitsev, V.D. Photonic jets for mid-IR focal plane arrays produced by the triangular dielectric prism / V.D. Zaitsev, S.S. Stafeev // Proc. SPIE. 2019. Vol. 11032. P. 1103212.
- [12] Geints, Yu.E. Modeling spatially localized photonic nanojets from phase diffraction gratings / Yu.E. Geints, A.A. Zemlyanov // J. Appl. Phys. – 2016. – Vol. 119. – P. 153101.
- [13] Liu, C.-Y. Theoretical and experimental investigations of photonic jet array from rectangle phase diffraction grating / C.-Y. Liu, T.-P. Yen, O.V. Minin, I.V. Minin // Proc. SPIE. – 2018. – Vol. 10712. – P. 107121H.
- [14] Nayak, C. Photonic nanojet produce from a rectangular grooves based finite length diffraction grating / C. Nayak, A. Saha – Elsevier, 2016. – P. 0030.
- [15] Geints, Y.E. Apodization-Assisted Subdiffraction Near-Field Localization in 2D Phase Diffraction Grating / Y.E. Geints, O.V. Minin, I.V. Minin // Ann. Phys. – 2019. – Vol. 531. – P. 1900033.

The formation of an array of photonic nanojets by square profile steps

V.D. Zaitsev¹, S.S. Stafeev^{1,2}

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086 ²Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardejskaya street 151, Samara, Russia, 443001

Abstract. Modeling by finite difference in time domain (FDTD) using the FullWAVE software package focusing a Gaussian beam with a width of 5.4 μ m and a wavelength of 0.633 μ m using a binary quartz glass diffraction grating (refractive index 1.46) showed that individual steps of the relief near its output surface form the regions of increased intensity - photonic nanojet. Moreover, such photonic nanostructures are bent when the wave front is tilted.