Формирование цилиндрического пучка половинного порядка с помощью субволновой дифракционной решетки

С.А. Дегтярев^{1,2}, С.Н. Хонина^{1,2}

¹Самарский национальный исследовательский университет им. академика С.П. Королева, Московское шоссе 34А, Самара, Россия, 443086

²Институт систем обработки изображений - филиал ФНИЦ «Кристаллография и фотоника» РАН, Молодогвардейская 151, Самара, Россия, 443001

Аннотация. В работе предложен метод расчета непрерывного профиля субволновых решеток для формирования векторных пучков с радиальной поляризацией любого порядка, в том числе дробных. Проведен численный расчет формирования векторного пучка половинного порядка с помощью субволновой решетки.

1. Введение

Цилиндрические векторные пучки различных порядков представляют широкий интерес в различных отраслях оптики, таких как уплотненная оптическая передача данных [1], амплитудно-поляризационное модулирование фокальных распределений [2] для микроманипулирования, микроскопии, лазерной абляции, изображения экзопланет [3].

В настоящий момент существует несколько методов формирования цилиндрических векторных пучков. Основными подходами можно назвать поляризационные преобразования исходного пучка с помощью жидкокристаллических поляризационных модуляторов [4], субволновых решеток [5, 6], с помощью суперпозиции векторных пучков [7]. Однако для CO₂ лазера (длина волны 10,6 мкм) пропускающими будут только субволновые решетки.

В работах [5, 6] показано, что с помощью тонких ламеллярных структур, которые по сути являются субволновыми решетками, можно формировать векторные пучки. В работе [8] теоретически и экспериментально показана возможность формирования радиально и азимутально-поляризованных пучков первого порядка с помощью субволновых решеток непрерывного профиля. В работах [9, 10] численно показано, что с помощью субволновых решеток возможна поляризационно-фазовая модуляция исходного пучка. В частности, авторы получили сфокусированные вихревые радиально и азимутально-поляризованные пучки с помощью секторных элементов. Скачок фазы на π осуществлялся путем расположения субволновых решеток под углом в 90° в соседних зонах Френеля. В статье [6] предложены секторные субволновые решетки для формирования векторных пучков с радиальной и азимутальной поляризацией произвольного порядка.

В данной работе приводится теоретическое обоснование возможности создания не секторных, а непрерывно изменяющихся субволновых решеток для формирования пучков с азимутальной и радиальной поляризацией произвольного порядка, в том числе, дробного. С целью подтверждения теоретических результатов было проведено численное моделирование

работы субволновой решетки для формирования пучка с радиальной поляризацией половинного порядка.

2. Субволновая гетерогенная ламеллярная структура как полуволновая пластинка

Субволновая гетерогенная ламеллярная структура представляет собой чередующиеся друг за другом два слоя из материалов с различными показателями преломления (рисунок 1).

Рисунок 1. Субволновая гетерогенная ламеллярная структура.

Отметим, что если слои плоскопараллельны и их толщина постоянна, то данная структура может быть описана как одноосный кристалл с обыкновенным n_{eff}^{TE} и необыкновенным n_{eff}^{TM} показателями преломления [11]:

$$n_{eff}^{TE} = \sqrt{Qn_1^2 + (1-Q)n_2^2}, \qquad (1)$$

$$n_{eff}^{TM} = \left(Qn_1^{-2} + (1-Q)n_2^{-2}\right)^{-1/2}, \qquad (2)$$

где Q – филфактор (отношение толщины первого слоя к периоду структуры), n_1 – показатель преломления первой среды, n_2 – показатель преломления второй среды. n_{eff}^{TE} – показатель преломления, соответствующий направлению, параллельному к слоям структуры (обыкновенный показатель). n_{eff}^{TM} – показатель преломления соответствующий направлению, перпендикулярному к слоям структуры (необыкновенный показатель).

Для примера найдем обыкновенный и необыкновенный показатели для ламеллярной структуры из слоев аморфного кремния (показатель преломления $n_1 = 4,206$ при оптической длине волны $\lambda = 633$ нм), перемежающихся со слоями воздуха (показатель преломления 1,0).

Филфактор равен Q=0,5. Получаем:
$$n_{eff}^{TE} = \sqrt{0,5}\sqrt{n_1^2 + 1} = 3,057$$
, а $n_{eff}^{TM} = \frac{n_1}{\sqrt{0,5(n_1^2 + 1)}} = 1,3759$.

Таким образом, основываясь на формулах (1) и (2), можно сделать вывод о том, что у описанной гетерогенной структуры разность обыкновенного и необыкновенного показателей преломления (1,6811), значительно больше, чем у природных анизотропных кристаллов, таких как исландский шпат (0,17), ниобат лития (0,09), кристаллический кварц (0,009).

Толщина полуволновой пластинки будет равной [9]:

$$\frac{2\pi}{\lambda}H\left|n_{eff}^{TE} - n_{eff}^{TM}\right| = \frac{2\pi}{\lambda}H\left(\sqrt{0,5}\sqrt{n^{2}+1} - \frac{n}{\sqrt{0,5(n^{2}+1)}}\right) = \frac{2\pi}{\lambda}H\left(\frac{0,5(n^{2}+1)-n}{\sqrt{0,5(n^{2}+1)}}\right) = \frac{2\pi}{\lambda}H\left(\frac{0,5(n^{2}+1)-n}{\sqrt{0,5(n^{2}+1)}}\right) = \frac{2\pi}{\lambda}H\left(\frac{1}{\sqrt{0,5(n^{2}+1)}}\right) = \frac{2\pi}{\lambda}H\left(\frac{1}{\sqrt{0,5(n^{2}+1)}}$$

36

$$=\frac{2\pi}{\lambda}H\left(\frac{\sqrt{0,5}(n-1)^2}{\sqrt{(n^2+1)}}\right)=\pi \quad \Rightarrow H=\lambda\sqrt{n^2+1}\left[\sqrt{2}(n-1)^2\right]^{-1}\approx 178 \,\mu\text{M}\,. \tag{3}$$

Таким образом, вполне возможно создавать ламеллярные структуры, соответсвующие полуволновым и четвертьволновым пластинкам в виде субволновой решетки на подложке.

Еще одно преимущество ламеллярной структуры перед двулучепреломляющим кристаллом заключается в том, что при изготовлении ламмелярной структуры можно произвольным образом изгибать профиль слоев структуры, изменять филфактор, ориентацию и период решетки. Ограничение на форму субволновой решетки накладывают лишь возможности метода литографического изготовления.

Одним из основных параметров решетки является вектор дифракционной решетки. Направление вектора решетки \vec{K} определяет ориентацию линий решетки, а модуль вектора \vec{K} определяет период решетки. Высота профиля бинарной решетки легко записывается с помощью вектора решетки \vec{K} :

$$h(\vec{r}) = \frac{h_0}{2} \left(1 + \operatorname{sign}\left(\cos\left(\vec{K}\,\vec{r}\right)\right) \right),\tag{4}$$

где \vec{r} – радиус-вектор, h_0 – высота ступеньки бинарной решетки, операция sign(x) – функция сигнум от x, $(\vec{K}\vec{r})$ – скалярное произведение.

Вектор \vec{K} субволновой решетки коллинеарен плоскости подложки и перпендикулярен оси распространения пучка z (рисунок 1). Покажем, что быстрая ось кристалла совпадает с вектором решетки \vec{K} . Это, очевидным образом, следует из формул (1) и (2). Показатель преломления n_{eff}^{TM} , соответствующий направлению электрического вектора при TM-поляризации, меньше показателя преломления n_{eff}^{TE} , соответствующего направлению электрического вектора при TE-поляризации. Два данных показателя преломления и определяют обыкновенный и необыкновенный показатели преломления анизотропного кристалла-решетки.

3. Формирование цилиндрических и квазицилиндрических пучков с помощью субволновых решеток

Если высота ступеньки бинарной решетки соответствует толщине полуволновой пластинки и рассчитана по формуле (3), то, как известно [10], данная решетка будет работать как полуволновая пластинка. То есть при прохождении линейно-поляризованного пучка через такую решетку, электрический вектор поворачивается на угол, равный удвоенному углу между электрическим вектором исходного пучка и вектором решетки \vec{K} .

Ничто не мешает вектору субволновой решетки \vec{K} зависеть от радиус-вектора \vec{r} . Это утверждение приводит к далеко ведущему последствию, заключающемуся в том, что посредством субволновой решетки можно произвольным образом поворачивать электрический вектор падающего пучка в различных точках поперечного сечения пучка. Таким образом, вполне возможно создавать векторные пучки с пространственно-модулированным направлением поляризации электрического вектора. К данному классу пучков относятся радиально- и азимутально- поляризованные пучки различных порядков.

Формула для электрического вектора радиально-поляризованного пучка *m*-ного порядка записывается в следующем виде.

$$\vec{E}_n^{Rad}(r,\varphi) = E(r) \begin{pmatrix} \cos(m\varphi) \\ \sin(m\varphi) \end{pmatrix},\tag{5}$$

где (r, φ) – полярные координаты, E(r) – амплитуда электрического вектора.

Пусть электрический вектор E_{in} исходного пучка ориентирован вдоль оси x (рисунок 2). Сам пучок распространяется в направлении, перпендикулярном плоскости рисунка 2. Чтобы создать радиально-поляризованный пучок (5), нужно в каждой точке (r,φ) поперечного сечения линейно-поляризованного пучка повернуть электрический вектор E_{in} на угол $m\varphi$. То есть угол между исходным электрическим вектором E_{in} и электрическим вектором выходного пучка E_{out} должен быть равным $m\varphi$. Вспомним, что поворот поляризации можно осуществить с помощью субволновой решетки, которая соответствует полуволновой пластинке. Причем угол между векторами \vec{K} и E_{out} будет равен удвоенному углу между векторами \vec{K} и E_{in} . Так как угол между векторами E_{in} и E_{out} должен быть равен $\frac{m\varphi}{2}$. Запишем формулу для вектора \vec{K} .

$$\vec{K}(x,y) = \begin{pmatrix} K_x(x,y) \\ K_y(x,y) \end{pmatrix} = \frac{2\pi}{d} \begin{pmatrix} \cos\left(\frac{m\varphi}{2}\right) \\ \sin\left(\frac{m\varphi}{2}\right) \end{pmatrix},$$
(6)

где *d* – период решетки, который вполне может зависеть от координат.

На рисунке 2 наглядно проиллюстрированы упомянутые векторы и углы между ними, если требуемый порядок радиально-поляризованного пучка равен 5, и рассматривается точка с полярным углом $\varphi = 10^{\circ}$.

Рисунок 2. Взаимное расположение вектора решетки \vec{K} и электрических векторов входного E_{in} и выходного E_{out} пучков.

Подставив формулу (6) в (4), получим формулу для высоты профиля бинарной субволновой решетки, преобразующей линейно-поляризованный пучок в пучок с радиальной поляризацией *m*-ного порядка.

$$h(x, y) = \frac{h_0}{2} \left(1 + \operatorname{sign}\left\{ \cos\left[\frac{2\pi}{d} \left(x \cdot \cos\left(\frac{m\varphi}{2}\right) + y \cdot \sin\left(\frac{m\varphi}{2}\right)\right)\right] \right\} \right), \tag{7}$$

Путь решетка выполнена из материала с показателем преломления $n_{mat} = \operatorname{Re}[n_{mat}] + i \operatorname{Im}[n_{mat}]$ где $\operatorname{Re}[n_{mat}]$ – действительная часть показателя преломления, $\operatorname{Im}[n_{mat}]$ – мнимая часть показателя преломления, *i* – мнимая единица. Пусть n(x, y) – показатель преломления в сечении решетки в точке с координатами (x, y). Из формулы (7) следуют формулы для распределений действительной и мнимой частей показателя преломления n(x, y).

$$\operatorname{Re}\left[n(x,y)\right] = 1 + \frac{\left(\operatorname{Re}\left[n_{mat}\right] - 1\right)}{2} \left(1 + \operatorname{sign}\left\{\cos\left[\frac{2\pi}{d}\left(x \cdot \cos\left(\frac{m\varphi}{2}\right) + y \cdot \sin\left(\frac{m\varphi}{2}\right)\right)\right]\right\}\right),\tag{8}$$

$$\operatorname{Im}\left[n(x,y)\right] = \frac{\operatorname{Im}\left[n_{mat}\right]}{2} \left(1 + \operatorname{sign}\left\{\cos\left[\frac{2\pi}{d}\left(x \cdot \cos\left(\frac{m\varphi}{2}\right) + y \cdot \sin\left(\frac{m\varphi}{2}\right)\right)\right]\right\}\right).$$
(9)

Формулы (8) и (9) построены таким образом, чтобы в тех областях сечения решетки, где присутствует материал решетки, показатель преломления был равен n_{mat} . Соответственно, там, где материала нет, там показатель преломления равен показателю преломления вакуума, то есть 1.

4. Формирование радиально-поляризованного пучка половинного порядка

Ничто не мешает выбрать порядок поляризации m дробным. Положим, что порядок m = 0,5.

Промоделируем в программном пакете Comsol работу кремниевой субволновой решетки для формирования радиально-поляризованного пучка *m*-ного порядка. Показатель преломления кремния равен $n_{mat} = 4,352 + i \cdot 0,486$.

На рисунке 3 показано распределение действительной части показателя преломления в сечении субволновой решетки Re[n(x, y)]. Расчет произведен по формуле (8).

На рисунке 4 показано распределение амплитуды вектора напряженности электрического поля при преобразовании линейно-поляризованного Гауссова лазерного пучка с помощью субволновой решетки. Профиль решетки виден на рисунке 3.

Рисунок 3. Распределение действительной части показателя преломления $\operatorname{Re}[n(x, y)]$ в сечении субволновой решетки

Рисунок 4. Распределение амплитуды вектора напряженности электрического поля в сечении пучка после прохождения решетки

На рисунке 4 черными стрелочками показаны направления вектора напряженности электрического поля в различных точках сечения пучка. По направлениям стрелочек легко видеть, что пучок имеет радиальную поляризацию половинного порядка, однако амплитуда распределена не равномерно, что говорит о ключевом влиянии различия коэффициентов Френеля для обыкновенного и необыкновенного лучей.

5. Выводы

Предложены субволновые решетки с непрерывным профилем для формирования квазицилиндрических пучков любых порядков, в том числе дробных. Численным расчетом подтверждено, что субволновая решетка для формирования векторного пучка половинного

порядка работает корректно. Однако существенны различия коэффициентов пропускания элемента от взаимной ориентации решетки и поляризации падающего пучка.

6. Благодарности

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 17-19-01186).

7. Литература

- [1] Millione, G. Using the nonseparability of vector beams to encode information for optical communication / G. Millione, Th. A. Nguyen, J. Leach, D. A. Nolan, R.R. Alfano // Optics Letters. - 2015. - V. 40(21). - P. 4887-4890. DOI: 10.1364/OL.40.004887.
- [2] Zhou, Z. Tight focusing of axially symmetric polarized beams with fractional orders / Z. Zhou,
 L. Zhu // Opt. Quant. Electron. 2015. V. 48(44). P. 1-9. DOI: 10.1007/s11082-015-0260-9.
- [3] Mawet, D. Annular groove phase mask coronagraph / D. Mawet, P. Riaud, O. Absil, J. Surdej // Astrophysical Journal. 2005. V. 633(2). P. 1191-1200. DOI: 10.1086/462409.
- [4] Hsu, W.-L. Infrared liquid crystal polymer micropolarizer / W.-L. Hsu, K. Balakrishnan, M. Ibn-Elhaj, S. Pau // Applied Optics. 2014. V. 53(23). P. 5252-5858. DOI: 10.1364/AO.53.005252.
- [5] Bomzon, Z. Space-variant Pancharatnam–Berry phase optical elements with computergenerated subwavelength gratings / C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte // Optics Letters. – 2002. – V. 40(21). – P. 1141-1143. DOI: 10.1364/OL.27.001141.
- [6] Niv, A. Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam–Berry phase optical elements / A. Niv, G. Biener, V. Kleiner, E. Hasman // Optics Letters. – 2004. – V. 29(3). – P. 238-240. DOI: 10.1364/OL.29.000238.
- [7] Maurer, C. Tailoring of arbitrary optical vector beams / Z. Bomzon, G. Biener, V. Kleiner, E. Hasman // New Journal of Physics. 2007. V. 9(78). P. 1-20. DOI: 10.1088/1367-2630/9/3/078.
- [8] Levy, U. Engineering space-variant inhomogeneous media for polarization control / U. Levy, C.-H. Tsai, L. Pang, Y. Fainman // Optics Letters. – 2004. – V. 29(15). – P. 1718-1720. DOI: 10.1364/OL.29.001718.
- [9] Котляр, В.В. Формирование и фокусировка векторного оптического вихря с помощью металинзы / В.В. Котляр, А.Г. Налимов // Компьютерная оптика. – 2017. – Т. 41, № 5. – С. 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
- [10] Налимов, А.Г. Моделирование микрометалинзы с высокой числовой апертурой и разным числом секторов / А.Г. Налимов // Компьютерная оптика. 2017. Т. 41, № 5. С. 655-660. DOI: 10.18287/2412-6179-2017-41-5-655-660.
- [11] Lalanne, P. On the effective medium theory of subwavelength periodic structures / P. Lalanne, D. Lemercier-Lalanne // J. Mod. Opt. – 1996. – V. 43. – P. 2063-2085. – DOI: 10.1080/ 09500349608232871.

Half-order cylindrical beam forming with subwavelength grating

S.A. Degtyarev^{1,2}, S.N. Khonina^{1,2}

¹Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardejskaya street 151, Samara, Russia, 443001 ²Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086

Abstract. In this work we propose a way to form vectorial vortex beams with subwavelength gratings with a smooth shape of the grooves. Also we propose a method to calculate the relief of the gratings. Conducted numerical simulation verified the ability to form half-order vectorial vortex beam.

Keywords: Cylindrical Beams, Amplitude-Phase-Polarization Transformation, Photonic-Crystal Polarizer, Metasurface