Фокусировка лазерного излучения диэлектрическими микроцилиндрами круглого сечения с металлической оболочкой

Е.С. Козлова^{а,б}

^а Институт систем обработки изображений РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, 443001, ул. Молодогвардейская 151, Самара, Россия

⁶ Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Московское шоссе, 34, Самара, Россия

Аннотация

Моделирование распространения ТЕ-поляризованного излучения с длиной волны λ=532 нм через диэлектрический цилиндр радиуса 2,1749λ из полиэстра с золотой оболочкой, толщиной 10 нм, с помощью метода конечных разностей, реализованного в COMSOL Myltiphysics, показало наличие узкого нанджета с максимальной интенсивностью в 6 раз превышающей интенсивность падающего излучения. Ширина и глубина наноджета по полуспаду интенсивности составили 0,39λ и 0,72λ соответственно.

Ключевые слова: поверхностный плазмон-поляритон; микроцилиндр; фокусировка; наноджет

1. Введение

Дифракционный предел в оптике ограничивает разрешающие способности оптических приборов, поэтому в настоящее время большое количество работ посвящено попыткам преодоления дифракционного предела. Получение фокусных пятен с малыми размерами является критическим в такой области как оптические системы памяти [1,2]. Субволновые фокусные пятна, создаваемые микросферами (фотонные наноструи) применимы в рамановской спектроскопии [3], и нанолитографии [4].

Для острой фокусировки широко используются диэлектрические цилиндры [5]. В [6] рассматривается фокусировка излучения (длина волны 500 нм) диэлектрическим (n=1.5) цилиндром эллиптического сечения. Ширина фокуса по полуспаду интенсивности составила 230 нм. Отдельное внимание уделяется многослойным цилиндрам [7-8]. В некоторых работах в качестве материала используются исключительно диэлектрики [7], в то время как в других дополнительно используют металлы [8]. В [7] рассматривали формирование ультрадлинных наноджетов для входного излучения на длине волны 632,8 нм с помощью диэлектрических цилиндров из комбинации BaF и LaSF.В [8] рассматривается формирование наноджета с помощью диэлектрический микроцилиндра (n=1.5) с оболочкой из золота. Показано, что для излучения, диной волны 532 нм на расстоянии порядка длины формируется наноджет шириной по полуспаду интесивностисти 250 нм.

В данной работе рассмотрена фокусировка излучения с помощью диэлектрических цилиндров с металлической оболочкой с помощью программного пакета COMSOL Multiphysics. Длина волны излучения равна 532 нм. В работе было проведено исследование характеристик фокусного пятна, таких как максимальная интенсивность и ширина пятна по полуспаду интенсивности, от толщины металлического слоя.

2. Моделирование плазмонов на поверхности круглого металлического цилиндра

Рассмотрим металлический цилиндр расположенный в воздухе. Чтобы рассчитать резонансный радиус, будем исходить из длины окружности, на которой должно уместиться целое число длин волн поверхностного плазмонполяритона. В качестве входного излучения рассмотрим ТМ-поляризованный лазерный пучок с длиной волны λ=532 нм. В качестве материалов для цилиндра рассмотрим золото и серебро, диэлектрическая проницаемость которых описывается моделью Друде-Лоренца [9]:

$$\varepsilon_m(\omega) = \varepsilon_\infty(z) + \frac{\omega_p^2}{-2i\omega v - \omega^2} + \sum_m \frac{A_m \omega_m^2}{-\omega^2 - 2i\omega \delta_m + \omega_m^2}$$
(1)

где ω – частота; ω_p – плазменная частота; ν – частота столкновений, A_m – амплитуда резонанса, δ_m – коэффициент демпфирования, ω_m – резонансная частота. Параметры моделей приведены в таблицах 1 и 2.

Для рассматриваемой длины волны мы получим следующие значения диэлектрической проницаемости (коэффициентов преломления) ε_{Ag} =-9,1375+0,8025*i* (n_{Ag} =0,1326+3,0257*i*) и ε_{Au} =-4,4602+2,5355*i* (n_{Au} =0,5789+2,1815*i*) для серебра и золота соответственно.

Рассчитаем длину волны поверхностного плазмон-поляритона по формуле [11]:

$$\lambda_{SPP} = \sqrt{\frac{\operatorname{Re}(\varepsilon_m) + \varepsilon_d}{\operatorname{Re}(\varepsilon_m)\varepsilon_d}} \lambda$$
⁽²⁾

Таблица 1. Параметры модели Друде-Лоренца для серебра [10]

m	A_m	δ _т , Гц	ω _m , Гц		
1	7,924697	9,840355	4,132646		
2	0,501327	1,144581	22,6941		
3	0,013329	0,164597	41,45307		
4	0,826552	2,319549	46,001		
5	1,113336	6,125	102,759		
$arepsilon_{\infty} = 1$					
ω _p =41,94605 Гц					
v=0,243097 Гц					

Таблица 2. Параметры модели Друде-Лоренца для золота [10]

m	A_m	δ _m , Гц	ω _m , Гц		
1	11,36293	0,610274	2,101774		
2	1,183639	0,873629	4,203549		
3	0,65677	2,203065	15,03655		
4	2,645486	6,315	21,79768		
5	2,014826	5,60642	67,45936		
$arepsilon_{\infty} = I$					
ω _p =39,86873 Гц					
v=0,13421 Гц					

Таким образом, длина волны поверхностного плазмон-поляритона для серебра составила λ_{Ag} = 479,42 нм, а для золота λ_{Au} = 468,58 нм. Чтобы рассчитать резонансный радиус для рассматриваемых цилиндров, воспользуемся следующей формулой []:

$$r = \frac{\lambda_{SPP} p}{2\pi} \tag{3}$$

где *г* – радиус цилиндра; *р* – номер резонанса.

Так, например, радиус для резонанса бго порядка для серебра составит r_{Ag} =479,42нм, а для золота r_{Au} =447,46нм. Промоделируем процесс формирования поверхностного плазмон-поляритона на серебряном и золотом цилиндрах с соответствующими радиусами с помощью программного пакета COMSOL Multiphysics, реализующим метод конечных разностей. Для сравнения проведем моделирование для серебряного цилиндра, на который падает ТЕ-поляризованное излучение. В ходе моделирования здесь и далее воспользуемся нерегулярными сетками с переменным шагом. Так в областях, близкой к разделу двух сред (металл/диэлектрик) используем сетку с мелким шагом $\lambda/40$, в то время как остальную область будем рассчитывать с шагом $\lambda/20$. На рис. 1 представлены распределения интенсивности, полученные в ходе моделирования.

Рис. 1. Распространение ТМ-поляризованного (а-б) и ТЕ-поляризованного (в) излучения через золотой (а) и серебряный (в) цилиндры.

Из рис. 1в видно, что в ходе распространения ТЕ-поляризованного излучения, излучение отражается от металлического цилиндра, в то время как при подаче ТМ-поляризованного излучения по поверхности металлического цилиндра начинает бежать поверхностный плазмон-поляритон (рис 1a-1б). При этом на поверхности цилиндра образуются пики интенсивности, характерные для резонасных эффектов.

3. Моделирование плазмонов на поверхности круглого многослойного цилиндра

В ранних работах нами рассматривалась резонансная фокусировка излучения с помощью диэлектрического цилиндра из полиэстра [12]. В ходе исследования был рассчитан резонасный радиус цилиндра для 18ой моды, который составил $r_P=2,1749\lambda$. Однако указанный пик формируется в непосредственной близости от цилиндра. Использование тонких металлических пленок может позволить увеличить протяженность области фокусировки излучения, формируя так называемый наноджет [8].

Рассмотрим диэлектрический цилиндр из полиэстра радиусом $r_P=2,1749\lambda$, с напыленной на него тонкой пленкой из металла толщиной Δr . В качестве материалов для пленки также выберем серебро и золото. С помощью пакета COMSOL Multiphysics проведем моделирование распространения TM-поляризованного излучения с длиной волны 532 нм через рассматриваемые микроцилиндры. В ходе исследования будем варьировать толщину металлического слоя от 10 нм до 30 нм с шагом в 1 нм. В таблице 3 приведена зависимость максимальной интенсивности I_{max} и ширины фокусного пятна по полуспаду интенсивности d_{FWHM} от толщины металлического слоя. Отметим, что на поверхности элемента формируется область интенсивности с двумя пиками, расположенными близко друг к другу. В следствие этого, максимальная интенсивность излучения замерялась на расстоянии 150 нм.

		Cep	ебряная обол	очка		
Δr	10	14	18	22	26	30
I _{max} , a.u.	3,77	2,15	1,17	0,65	0,39	0,31
d_{FWHM}, λ	0,53	0,53	0,53	0,58	0,50	0,54
		3	олотая оболоч	іка		
Δr	10	14	18	22	26	30
I _{max} , a.u.	4,75	3,83	3,00	2,28	1,67	1,18
d_{FWHM}, λ	0,72	0,74	0,75	0,77	0,81	0,87

Таблица 3. Зависимость параметров фокусного пятна от толщины металлического слоя для ТМ-поляризации

Из таблицы 3 видно, что максимальную интенсивность имеют фокусные пятна формируемые многослойным цилиндром с золотой оболочкой. Это связано с тем, что на данной длине волны золото имеет меньший коэффициент поглощения нежели серебро. Однако при этом минимальную ширину по полуспаду интенсивности обеспечивает цилиндр с серебряной оболочкой. В обоих случаях увеличение толщины металлического слоя приводит к падению максимальной интенсивности и увеличению ширины по полуспаду интенсивности. Оптимальная толщина металлической оболочки составила 10 нм в обоих случаях.

Теперь проведем моделирование фокусировки предложенными цилиндрами ТЕ-поляризованного излучения и аналогичное выше указанному исследование зависимости максимальной интенсивности и ширины фокусного пятна по полуспаду интенсивности от толщины металлического слоя. Отметим, что в данном случае замер осуществлялся вблизи цилиндра, так как в случае использование ТЕ-поляризации формируется область высокой интенсивности с одним пиком.

Серебряная оболочка						
Δr	10	14	18	22	26	30
I _{max} , a.u.	4,52	2,31	1,14	0,60	0,35	0,22
d_{FWHM}, λ	0,44	0,48	0,52	0,52	0,53	0,52
Золотая оболочка						
Δr	10	14	18	22	26	30
I _{max} , a.u.	5,62	3,73	2,46	1,62	1,07	0,70
d_{FWHM}, λ	0,39	0,41	0,42	0,44	0,47	0,49

Таблица 4. Зависимость параметров фокусного пятна от толщины металлического слоя для ТЕ-поляризации

Из таблицы 4 видно, что максимальную интенсивность как и в прошлом случае имеют фокусные пятна формируемые многослойным цилиндром с золотой оболочкой. Однако, в отличие от предыдущего случая, минимальную ширину по полуспаду интенсивности также обеспечивает цилиндр с золотой оболочкой. В обоих случаях увеличение толщины металлического слоя приводит к падению максимальной интенсивности и увеличению ширины по полуспаду интенсивная толщина металлической оболочки составила 10 нм в обоих случаях. На рис. 2 представлены результаты моделирования для многослойного цилиндра с золотой оболочкой толщиной 10 нм.

Из рис. 2 видно, что в ходе фокусировки излучения преодолевается дифракционный предел. Длина наноджета по полуспаду интенсивности составляет 0,72 λ.

4. Заключение

В работе проведено исследование фокусировки излучения с помощью диэлектрических цилиндров с металлической оболочкой с помощью программного пакета COMSOL Multiphysics. В качестве материалов рассматривались полиэстр (сердцевина), золото и серебро (оболочка). Радиус сердцевины был взят из работы [12] и равен r_p =2,1749 λ . Длина волны излучения равна 532 нм. В работе было проведено исследование характеристик фокусного пятна от толщины

металлического слоя. В ходе анализа было отмечено, что чем тоньше металлическая оболочка, тем лучше фокусируется свет. Сравнительный анализ также показал, что использование золота в качестве оболочки для рассматриваемой длины волны способствует меньшему поглощению света и как следствие большей интенсивности в фокусе. Кроме того в случае использования ТЕ-поляризованного излучения удается добиться более узкой фокусировки. В итоге был выбран микроцилиндр с золотой оболочкой толщиной 10 нм. Результаты моделирования показали, что в ходе фокусировки преодолевается дифракционный предел. Ширина фокуса по полуспаду интенсивности составила 0,39λ При этом наличие металлического слоя позволяет увеличить глубину фокуса до 0,72λ. Полученные результаты могут найти свое применеие в системах обработки и хранении информации, спектроскопии и нанолитографии.

Рис. 2. Распределение интенсивности в плоскости XZ (а), вдоль осих X сразу за цилиндром (б) и вдоль оси Z при *x*=0 (в) при распространени ТЕполяризованного излучения через диэлектрический цилиндр с металлической оболочкой из золота тощиной 10 нм.

Благодарности

Работа частично поддержана грантами РФФИ (14-29-07133, 16-07-00990, 15-47-02492, 15-37-20723, 16-47-630483), Министерством образования и науки РФ (МК-9019.2016.2, СП-4375.2016.5).

Литература

- [1] Li, X. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam / X. Li, Y. Cao, and M. Gu. // Opt. Lett. 2011. - V.36. - P. 2510-2512
- [2] Li, X. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate / X. Li, Y. Cao, N. Tian, L. Fu, and M. Gu // Optica. - 2015. - V.2. - P. 567-570.
- [3] Yi, K.J. Enhanced Raman scattering by self-assembled silica spherical microparticles / K.J. Yi, H. Wang, Y.F. Lu, Z.Y. Yang // J. Appl. Phys. 2007. V.101. – P.063528.
- [4] McLeod, E. Subwavelength direct-write nanopatterning using optically trapped microspheres / E. McLeod, C.B. Arnold // Nature Nano. 2008. V.3. P. 413-417.
- [5] Chen, Z. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique / Z. Chen, A. Taflove, V. Backman // Opt. Express. 2004. V.12(7). P. 1214-1220.
- [6] Liu, C.-Y. Photonic nanojet modulation by elliptical microcylinders / C.-Y. Liu*, L.-J. Chang // Optik. 2014. V.125. P.4043-4046.
- [7] Shen, Y. Ultralong photonic nanojet formed by a two-layer dielectric microsphere / Y. Shen, L.V. Wang, and J.-T. Shen // Optics Letters. 2014. V.39(14).
 P. 4120-4123.
- [8] Liu, C.-Y. Superenhanced photonic nanojet by core-shell microcylinders / C.-Y. Liu // Physics Letters A. 2012. V. 376. P. 1856-1860.
- [9] Vial, A. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method / Vial A, Laroche T, Dridi M, and Le Cunff L. // Appl. Phys. A. - 2011. - V.103(3). - P.849-853.
- [10] Rakic, A. D. Optical properties of metallic films for vertical-cavity optoelectronic devices / A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski // App.Optics. - 1998. - V.37(22). - P. 5271-5783.
- [11] Fang, Y. Resonant surface plasmons of a metal nanosphere can be considered in the way of propagating surface plasmons / Y. Fang, and X. Tian // arXiv preprint arXiv:1412.2664. 2014. [Electronic resource]. Access mode: https://arxiv.org/abs/1412.2664 (01.02.2017).
- [12] Kozlova, E.S. Modeling the resonance focusing of a picosecond laser pulse using a dielectric microcylinder / E.S. Kozlova, V.V. Kotlyar, S.A. Degtyarev. // J. Opt. Soc. Am. B. – 2015. – V.32(11). – P 2352-2357.