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Abstract. A unified mathematical form of invertible nonlinear transforms has been introduced
in the form of fast transform (like to fast Fourier transform). The main goal of this article is to
show that fast Fourier transforms (FFT) can be both non-linearized and generalized. The non-
linearization and the generalization of FFTs are based on a set of recursive rules, which
generate nonlinear transforms with a fast algorithm. For each rule, simple relations give the
number of elementary nonlinear operations required by the fast algorithm. The resulting
scheme is formed by three stages. The first stage contains so-called basis 2x2 nonlinear
transforms (BNLT). The second step is based on sparse nonlinear transforms (SNLT), which
are direct sums (combinations) of BNLTs. The third stage produces fast nonlinear transform
(FNLT) in the form of finite number multiplicative superposition of SNLTs. The framework
developed allows the introduction of generalized transforms, which include all common fast
transforms. The reported architecture generalizes both linear and non-linear fast transforms,
which can be considered as a formal framework for generalized signal processing. This
approach leads to a number of new linear and nonlinear transforms of potential interest, for
example, for OFDM and CDMA telecommunication systems.We propose a novel modulation
technique based on nonlinear transforms. The proposed modulation scheme could be used
directly instead of a conventional orthogonal frequency division multiplexing (OFDM)
transmitter, resulting in a system possessing all benefits of OFDM along with reduced peak-to-
average power ratio (PAPR).

1. Introduction
Non-linear signal processing has emerged in the last years as a specific target for signal processing
tools, being a direct consequence of the degree of saturation produced in the linear signal processing
field. At the beginning, non-linear filtering and modelling were under the scope of the filtering theory
based on generalized nonlinear convolution integral, such as the Volterra model [1,2] or the G-
functional Wiener model [3-5]. Concerning non-linear filtering, nonlinear signal processing based on
aggregation operators was developed and proven useful to opening up new signal and image
processing applications [6-14]. More recent non-liner transforms are those approached in a neural
network framework, particularly the so-called radial basis functions successfully applied in modern
communication receivers [15-17].

In this paper, we present a unified view of discrete non-linear transforms (DNLT) with a fast
algorithm. A discrete non-linear N -dimension transform is characterized by N non-linear processing
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scalar-valued functions {f,(-,.,....., 1)} . They form a non-linear transformation (NLT) NF : x)—|y).

-
Here, a length- N signal column-vector |x>:l . I is transformed by non-linear transform F as
| |
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to produce a new column-vector |y ). Conusely, we denote the NLT by the matrix-like operator
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where -, is the place for variable , _x, (k =o0,1,...,N —1). For signal samples,  x, we use two indexes

I and k . The first index |1 « is address for operand x, and the second index « is the time number
in time series x,.x,,...x, ,. Samples can be rearranged in side column vector |x). But functions

{fk(»0,-1,...,-N71)}::’01 take samples from the appropriate places of |x> ignoring the time number. For
example,
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Figure 1. Non-linear signal transformation (NST).

We see that signal samples X,.X,,.... X, , are combined in N non-linear processing scalar-valued

functions {f, (;.ey } (see figure 1), to form samples vy,.y,.....y,_, of a new signal |y> The
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components y,y,,....y, , of the signal |y> represent non-linear interactions between different time
samples x,.x,,....x,_, of the initial signal |x).

In 1957 Andrei Kolmogorov [18] solved the 13th problem of the collection that Hilbert provided as
the mathematical problems for the 20th century. He proved the existence of a solution, based on
functions of a single variable, of the problem of finding a continuous function mapping ~ inputs and

outputs. If |x) and |y) are the input and output vectors of N components, the existence theorem
specifies that the processor which maps |x) in |y) is formed by two stages. The first stage has a
mathematical representation given by

N -1

K= W () =¥ () + W () + e+ W (X ), =01, 2N (1)

for (2N +1)N functions {an(.n)}m'”’l. They are continuous and also standard, i.e., they are
q=0,n=0

independent of the choice of the function f . This means that in n-dimensional (n-D) space we

introduce 2N +1 special (and very exotic) coordinates {x, | o They are functions of the form (1).
q=0

The second stage contains (2N +1)N  functions {n,_ (.q)}N:“?N that produce the N -component of

the output
2N _ 2 N-1 \
Y = fo(Xg X, XN,1):thq(Xq)=zhquZTqH(XH)J’ k=01..,N-1, (2)
q=0 q=0 n=0
or
[ 2N "N -1 —l
| Yo = fo(xo’xi """ OqLZTQH(XH)J
|
| 2N [N-1 ]
Iy, = (X X Xy ) = > hlqt >, (XH)J 3)
% q=0 =0
|
|
| 2N [N 7
[Yya = (X XN—l)zthfl‘qi‘z‘{lq"(X")J’
l q=0 n=0

where the functions {° Z(.)}L are continuous. We see, that every continuous coordinate function
q=1

f (X, %,,....X,_,) IS represented as the sum of continuous functions of new individual coordinates.
Thus, in accordance with the Kolmogorov theorem, all continuous functions of many variables can be
obtained from continuous functions of one variable using linear operations and superposition.

We can presented (2) and (3) in matrix-like form:

v)-
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where 1=, ()] . w=[¥, ()] and ° isthe symbol of superposition. In particular,
‘ ' 4=0,k=0

)
k=0,q=0

FAEACEN)

a non-linear (2 x 2) -transform can be represented as (the Arnold theorem)
Lle f1(X0'X1)

[Wo0(0) P %o, ()]
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This theorem is not only elegant, but also simple. Its proof is elementarily presented in a brilliant
article by V.1. Arnold [19].

Remark 1. In [20] Gashkov points out that circuit synthesis of continuous functions might be
important for the analysis of artificial neural systems modelling the human brain. In 1987, R. Hecht-
Nielsen noticed that Kolmogorov’s theorem has an interpretation in terms of neural networks [21].

The search of a fast non-linear transforms is of paramount importance in the design of a suitable
non-linear methods in terms of the digital signal processing. In [22] the authors related the mapping
theorem of Kolmogorov and FFT for design FNLT. Precisely, it is this theorem, which motivates this
work. Starting from the usual architecture of FFT, a new architecture for non-linear transforms formed
by three processing stages is introduced. A closed formulation for the design of such an architecture is
also presented. The architecture is described in detail. The objective is to find a procedure for fast
nonlinear processing from only short input data.

The paper are organized as follows. Section 2 begins an overview of unified approaches to fast
Discrete Orthogonal Transforms (DOTS) such as the well-known Fast Fourier Transform (FFT), Fast
Walsh Transform (FWT), Fast Haar Transform (FHT) and similar algorithms for other transforms.
Section 3 introduces a fast Fourier-like representations for non-linear transforms. The resulting
algorithms are formed by three stages. The first stage contains so-called basis 2x2 non-linear
transforms (BNLT). The second step is based on sparse non-linear transforms (SNLT), which are
direct sums (combinations) of BNLTs. The third stage produces fast non-linear transforms (FNLTS)
in the form of finite number multiplicative superposition of SNLTs. These stages form a new unified
approach based on introduction of new families of non-linear invertible fast transforms having a
unified structure. This approach allows not only to generalize many well-known fast DOTSs but also to
synthesize an infinite number of new linear and non-linear transforms that can be adapted to given
application. In Section 4 the non-linear Kronecker “product” is briefly described in order to support
the new architecture of fast non-linear transforms. .New FNLTSs generalize both linear and non-linear
fast transforms, which can be considered as a formal framework for generalized signal processing.

f ,
Later on, in Section 5, the explicitly invertible basis (2 x 2) -transforms {y(’}{f(’(@% Xl))} are
yl 1 XO Xl

presented as elementary building blocks for designing of FNLTs. Finally, in Section 6, we propose a
novel modulation technique based on fast non-linear transforms. The proposed modulation scheme
could be used directly instead of a conventional orthogonal frequency division multiplexing (OFDM)
transmitter, resulting in a system possessing all benefits of OFDM along with reduced peak-to-average
power ratio (PAPR).

2. A Little bit of history, and a formulation of a problem

For some specific transforms of interest such as the Fourier, Walsh-Hadamard transforms, a fast
algorithm has been found, which requires fewer elementary operations. In 1965 Cooley and Tukey
[23] developed an algorithm for accelerating the calculation of the DFT which in some ways
revolutionized the numerical computation of linear (primarily orthogonal land unitary) transforms.
This algorithm, known as the Fast Fourier Transform (FFT) radix-2. Parallel to the development of
FFT, there has been a development of similar algorithms for other transforms: Discrete Walsh
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transform (DWT) [24,25], Discrete Hartley Transform (DHtT) [26,27], Discrete Haar Transform
(DHT) [28,29]. Some workers have considered the definition of fast algorithms for generalized
transforms and we mention the works by Andrews, et al. [30-32], [Rao, et al. [33,34] and Labunets
[35-44] (for so-called many-parameter transforms, wavelet and packets). A unified set of algorithms
have been developed by Demuth [45], Labunets [46] and [47].

r=1 r=2 =3
Figure 2. Fast Fourier transform (N =8 ).

Fast Fourier transform is the following iteration procedure (see figure 2):
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Figure 3. 8-point Fast Fourier transform (and interconnections between butterflies).

We see the basic element of the FFT is a number of operations on complex data, called the
butterfly-block. Each butterfly has two inputs and two outputs (figure 3). The values at the inputs are

called a, and b, ., the values at the outputs are called ¢, and d, ... Complex number PR
(twiddle factor) is the weight factor, and is different for each butterfly. The ¢, and d . values are

computed according to the equations (see figure 4):
(ci :(ai +bi +2,,,),
"Butt' = J , -
" tdi,+2r71 = (ai, - bir+2"1 )gzw.br'

Every butterfly consists of one complex addition, one complex subtraction and one complex
multiplication. In this case, each butterfly in effect executes a two-point FFT.

By combining the butterfly operations in a suitable manner, a 2N point FFT is created. We see that
the butterfly representation of the FFT algorithm is an elegant representation, showing the data-flow
and the operations on the data in a graphical manner. In the butterfly representation of the FFT, the
operations are shown as blocks, and the lines connecting the butterflies represent the data-flow
between the blocks.

In this paper, we introduce two new structures for nonlinear signal processing. Both structures are
based on a n -step decomposition of DFT (where n = 10g, N ). Our approach is synthetic and is based

on the following observation: a few types of fast unitary matrices of small order generate recursively
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fast unitary transforms of arbitrary order. In this paper, we attempt to generalize the fast linear
transformations to various non-linear cases based on parallel/serial concatenation elementary nonlinear
2x2-transforms (non-linear butterfly maps). Using this framework we shall define a large family of
FUT and derive simply a number of old and new results about the FFT algorithms, other known

transforms and establish structural properties between transforms.
° ° ° (]

° ° ° °
Figure 4. Butterfly in-place and nonin-place operations.

3. Fast nonlinear transforms

We shall present two elementary rules which generate a new non-linear (n x n ) -transforms from some
basis non-linear (2 x 2 -transforms. These rules will then be used in a constructive and systematic
fashion to generate non-linear transforms. For each rule we relate the set of elementary basis non-

linear (2 x 2) -transforms for the new (N x n) -transform.
Let v, bea n -dimension space spanned on basis{e,,e

018 €y
V=V { 0’ 1""’eN—1} :Span{ 00 € By 1}
Here n = 2". We divide the space v on m = n/2 = 2" 2 -D spaces

V., & = Vzo{elé,,e

N

e, ), e

0}@vj{u ,1}@ eV, 1{eIM,,eIJM1}

iy o

"ty
There are Q = ] ¢/ _,, = T—l!zsimilar partitions. Further, we introduce the following elementary
2

non-linear (2 x 2) -transforms, called basis transform (BT):

BT,:V,{e .e;} > V,{e .} BT2:V,{e ,e,}—> V,{e e}
Each of them is described by two arbitrary functionsg, (., ,-), g,¢, .- )"

ID' Il
Yip = 906X ) — Vi, = 5, 906, %)
BT, < BT:
RANLICREN! LY.

i
1

J.lh(xio,xi ).

1

We will denote them in two ways:
FyT F.eg(,, )1 FXT F,& i,x)T FyT o9 ,.-,1)1 FXT |F,& i.x)T

=1 °|
LVuJ L-, a)JL J L-& ia”‘a)J LY,]J L 'im)JL J [ et 'X)J

o

or as
[y, 1 [x, T F,&g( X )'I ly, | [, 1T o90x )]
| " 1=[a.h]iy.i e | 1=y By Joon]i.i ] = I
[ Y ] RS J L.&h(X,YX)J | Y | % | [ e PO X)) |
’—ioeg(.i , )—| |—Ju iu"1)—|
where BT, := [g.hli, i, ] = | | and BT, = [ . i |o.hi,.i,] =
L'l“h(.")’.il)J |_1“ .IO,.II)J

Sometimes we will use weights for variables and “amplitudes” for non-linear functions:
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) aog(wooxin,w X. ) 1

) Lean oo | %)L centn ) |
1y, | |Ljl&alh(ww(-io),wu(-il))J %, | Lhk a,n (W, X, Wy, ) J
We will denote them by the following ways

|r iwaog(woo(-%)ku(-il)ﬂl ‘FX T| |f iwaog(woo(xiu),wm(xij))]
lL i]&alh(wlo(qu),wll(',]))J LXE J |L Lo ah (W, (x )Wy (x,) J
|—y,~ 1 [x, 1
| 0 |=|:jo'j1 aog(Woo'Wm)*alh(W10'W11)io'i1}0| 0 |::
v ] EN
[,waog(wwu),wm(-.))] |FXT| {Jvﬁaosa(woox.,wmx.l)]
I_ jlealh(wlo(.iﬂ)’wll(.il))J {Xil J L jlealh(wloxio’wllxil) J’

where

o } }— iueaog(WUU ('iu)'Woi('il))
IO,I1 =
|L ilkalh(Wlo(.iﬂ)’wll(.il))

BT, := [aog(woo'wm)'alh(W10'W11)

|0,|1 = .
|L e alh (WlO('ig )’Wn('il))

i1

BT:=[ .,

aog (WOO’WOI)’alh (WIO’Wll)

In particular, if
[ a,g(Wo, () wWo, ()1 TagAdd (wWo, (), Wy, ()1 Tag (We, () +wg ()]
lL ah (w, (), w,, () J_ |L a,Sub (w,, (), w,,()) | [ 2 (W, ()~ w,,()) |
then it is a linear matrix transform

ryo—|_raoAdd("\’00(')’\’\101('))—‘|—XO—|_|—ao(W00Xo'*'melﬂ |—a0 —H—WOO W01—||—X0—|

Y1 |_alsUb(Wlo(')’Wll('))JLxl J_Lal(WIOXO_Wllxl)J L a, JLWm Wy, JLxl Jl
The analysis of FFT (5) has been done by factorization of the matrix FT into a set of largely
sparse matrices, each expressing a stage of computation. The general formulas for nonlinear

transforms below have been derived for this interconnection scheme.

An arbitrary s = m -1=2""-1 basis transforms generate in v some nonlinear radix-2 sparse

non-linear transform (ST)

0 .y,0 0 o 0.0 .0
BT, :V,{e,.e.} > V. {e, e} [g h |0,|1}
BT, :V,{e,.e.} > V,{e, e} ESNN s s
ST = o & b _ =®BT2p(iop,i1p)=@[gp,hp
p=0 p=0
S .\, s s . s|.s .s
BT, 1V {e, e3> Vi {e, 2.} EXuRiN

for basis transforms of the type BT, and
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-0

BT2:V,{e ..} > V,{e, e} (5.3 jo" 0" [ig.if ]

—
— BT.:V.{e,.e,} > V.{e,,e, i illet ntis, il s — s @)
ST = cVieped o Vitepey || [ o i =@BT(5 0 1) = @ [4 i fo" h il ]

R : p=0 p=0
s . . . .
BT. :st{elsyeii}_) st{ef’ef} [Jos']ls gsyhS Ii"f}

for basis transforms of the type BT . Each sparse transform contains s basis transforms.
The sequence ¢i?,if:il.i':..;i)' i 'y forms addressing scheme of all basis transforms (sr;}" for

the so-called in-place radix-2 FNLT and two sequences {ig’ Wt el } form two

L0 .0, .1 .1 M-l LM -1
P P PRI PR ETENIN PR 1Y

addressing schemes of all basis transforms {E;}S for the so-called nonin-place radix-2 FNLT.

-1

}Q’l be two full sets of the non-linear radix-2 “sparse” transforms

r=0

Let A ={’5T}i2 and  _ {’ST

=0

sT:vY 5> v 'sTiv! o v of the forms (6) and (7), respectively.

out’

Definition 1. The following - -products
- r 5 ’— ° r p,or.p r.p —| : ’— ° rypr rep r=p —l
FNLT =[] 'sT=T]|@ 'BT/Cil. )| =TT @[ o" n°[i. i)} ®)
r-1 -1 p=o0 ] -1 p-0 ]
L— - S r—p r.p r.p, ,r.p r.p 5 r ° rep repj|r_ p rppfr.op r.p —‘
FNLT = ST:H|@ BT2( j,. I, /iy, iy )J= I_@[ jo,» ;|9 h [P }J (9)
r=1 r=1 p=0 k=1 p=0

are called the in-place and nonin-place radix-2 FNLTs of stage . respectively. For classical
orthogonal (and unitary) transforms L =109, N =n . In details, these expressions have the following

forms:

L
FNLT =] 'sT = tSTeo..°?ST°'sST =
r=1

BT, (g, NN BT, (%, %)) BT, (Yiy, i)
BT, (iy, N . BT, (%N, Ci)) . BT, (Yt
LBT:(LiDS,Lils) ZBTZS(QiDSVZils) 1BTZS(1iOS,1i15) (10)
[LgD’LhO LiOO’LilﬂJ [zgoyzho 2i312i10J I:lgo,lho 1i;,1i10:|
L 1 L 1lL.1 L.1 2 1 2 1]12.1 2.1 1 11 1(1.1 1.1
_[ h 0|1:|°0|:g,hIO,Il}o[g,hlo,ll}

1.5 1.8
ID ! Il

|:2gSy2hS zi;,2i15j| [195’1h5

0

L

L

r 1
FNLT:H ST= ST°..° ST®° ST =

r=1
LBT;(ngijlo/LigyLilo) ZBT;(Zj(?'Zle/ZiODYZif) lBT;(Ij;),lle/lingif) (11)
) LBTZI(LJ;'LJII/L|;’L|11) . . ZBTZI(ZJ;’ZJ;/Zi;’ZI;) . 1BT21(1J;'1111/1|;’1|11) )
LBT:(LjDS’LjIS/LiOSYLif) ZBTZS(ZJ-OS’ZJ-ISIZiGS’Zils) 1BTZS(1jDS’lj15/1iOS’1i1$)
[LjOO‘leD LgothD LiOD'Lif] |:2j00’2j10 Zgﬂ’ZhO Zi00'2i10:| [1]-00’1]-10 1.0 1h0 1i§yli10:|
L.1 L.1fL 1 L, 1|L.1 L.1 2.1 2.112 1 2,1|2.1 2.1 1.1 1.1)1 1 1,1|1.1 1.1
B B TS Y B o TR I P N P P O O S M N I R
[LjDS‘les LgS’LhS LiOSYLilSJ [ZJ-OS'Zle ZQS’ZhS 2i0512i15:| [1J-OS'IJ-15 1.8 1hS 1i0511i15:|
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Each fast non-linear transform (see figure 5) contains L(s +1)= LN /2 basis transforms and
depends on LN non-linear basis functions (- rhp}’:“’:s Ifall [g+ ] has the following form

r=1,p=0
|:ra°p ’ 'g ’ ( rWopo(')’ rWopi('))’ ralp -'h? ( ’er;(')‘ rW1p1(')):|,
then each fast non-linear transform depends on LN non-linear basis functions (g rpey ™", LN
r=1,p=0

r=L,p=S

r=L,p=S

and 21N coeff|C|ents{ we, whw .
r=1,p=0

10’ 11

coefficients {"a/, At g0+ Wois

Figure 5. Fast non-linear transform contains LN /2 =16 basis transforms and depends on LN = 32
non-linear basis functions.

There are several address schemes in digital signal processing. For example,

riop =p,, .0 ) r.op _ iy
bl H,’.p e
li1°=pr+2 , l =2p+1 i"=p, +2
where p :2" P |+ p(mod2™"). For both schemes we have the following fast nonlinear
r L r—1J
2
transforms:
L S
FNLT=HHH g°, 'h” pr,pr+2"1” (12)
r=1 p=0
S
FNLT = HHHZp 2p+1]'g","h "pr,pr+2"1ﬂ_ (13)
r=1 p=0

It is easy to see that nonin-place radix-2 FNLT (9) can be represented in one of the following two
standard forms

rgp’rhp

- g cl)
]

In the first of ones we use standard input ordering and in the second — standard output ordering. All
three forms (10)-(11) and (14) allow a general universal form:

1 Ll C oo
}|, ENLT = |@[2p.2p+1|gp,hp
J r=1|_P=O

L
FNLT =P °TI('ST°'P)=P, (ST "P)o..o(’sT’P)e('sT°'P)=

out
r=1

ecT{[@ e | T [@ [0 ) e -
i1 [ pso ) =1 (L oco )

{ SCLE s | AU R TR

BPSt] S Ny P | S R ) B B

1 | (e )b
(D] R IEIED] B D .
TR e TR e A T
S o i |
(LA D B A3 | B B IR
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Figure 6. General universal form of FNLT, where basis transforms have standard input and output

ordering.

where we use basis transforms with standard input and output ordering (see figure 6):

BT, =["9".'n"]= [Zp 2p+1|r P 'h }

and where p_,"P = P are output and input permutation matrices.

4. The explicitly invertible transformation

In this section, we introduce first of all the simplest version of the explicitly invertible transformation:
it consists of a change of variables, involving 2 arbitrary functions g(.),h(.-), from 2 quantities x,, x,

to 2 quantities y,,y, and vice versa. It reads as follows [ Ye!_[9Co) 1% T,
o v [heooa |x]
I £(p00) = fog () + For () @NA () = hyy () + hy, () then
Yol THeCo)+ fou() T %] Ffoo( ) f ()1 rx 1 [ o () + For (%) ]
L] [ty +maco] [0 7| ) 1 | x| [ + o)
In particular, we are going to use the following basis transforms
y, = x + (%) =x +f(x,), Y, =%, + 1 (%) =f(x)+x,,

,BT,: BT, :
[yzzx2+h( ) =%, +h(x +f(x,)), [yZ:x1+h(y1):x1+h(f(x1)+xz),

2

jyl [ex, +sxz]+[cf(x )+ sh(x, +f( :|
|2 =[sx - ox, ]+ [sf(x,) - ch(x, + f(x ]
l

J+ [sfC
y, =[x, + ¢x, +[cf )+ sh(f(x,)
[

y, =[sx, —cx, ]+ [sf(x) - ch(f(x)+x, )]
or in matrix-like form

[y, a1 T 1)+ fC) T Tox T [ ox+f(x) 1
el L bl T |
Y, X, |_h( +f(-,) J 2o X, [ X + (%, + f( ))J
My, 1 Fx1 T f)+1(,) T Feox 1T [ fx)+x,
=,BT,° =| ° | [
{sz {sz |_1()+h +f() L sz [ X+ f(x)+x)J
IHJ‘ |f><11| lf[cl( )+ s1(-,)]+ [ef (-,) + sh (- ]T X, 1|
= ,BT,® =
\-yZJ LXZJ | [51(,) - e1( D]+ [sfC, )—ch( f(z))]J {zeXzJ
;—[cx +5x, ]+ [cf(x2)+sh(x1+f(x2))ﬂ
_‘_[sxl—cxz]+[sf(xz)—ch(x1+f(x2))h’
My, 1 lfx T‘ ;—[sl )+cl(-2)]+[cf(»l)+sh(f(~1)+-z)ﬂ lele|
| |=.BT,° = ° =
LY. | | % | |[s1C, —cl(-l)]+[sf(-l)—ch(f(~1)+-2):u L2c X |

|r[sx1 +ox, ]+ [ef (x,) + sh(f(x,)+ xz)ﬂ
. | [sx, = ex, ]+ [sf(x) —ch(f(x)+ XZ)MI
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where ¢ := cos¢, s:=sing. It IS easy to see that

{yl}_ BT (f,h)c[XJ EON 1
Y, X,

[1(, f(ﬂf x 1)

1

l( )J |_2% ZJ

| (
_|Lh('1) 10,) | L

J -

[ [ox +f(x,) 1
|L2F X, | I_x2+h(x +f(x, ))J’
i [
J |L

HESE TR L CY N AN A
ML TR . )
f(x,)+ X, 17|— f(x))+ X, i
X, J_i_x1+h(f(x1)+x2)J’
My, 1 [x, 1 [ci s [x, 1) Tex, + sx, + cf(x,) + sh(x, +f(x,))]
— BT (f h ¢) | ................ ‘0‘ 1BTZ(f’h)O |_| |’
Lsz LXZJ |_S - szb | %, — X, +sf(x,)-ch(x, +f(x, ))J
My, 1 [x,1 lTei sl ( Fx, 1V Tsx, +cx, +cf(x)+ sh(f(x,)+x,)]
BT (f h (p)o |o| ZBTZ(f,h) |_| |
LyZJ LXJ ¢ szb |_sx2—cx1+sf(x1)—ch(f(x1)+XZ)J

The most remarkable aspect of these transformations is its explicitly invertible character. For example,

[1¢,) i -fC)71 (T 1) 1 Ty, T‘\
‘L U”Jh“” o )
_r1(-1)§ff(-2ﬂ°ﬁ1(~) T xefxy D
_|L 1('2)J| u h(,) 1 )J' leF X, +h (x, +f(x)U
f%..<......>. ....... :.t..<. ..... .ﬂ [ %+ 100) 1T (T T, ety |
lL ' J L h(x +f(x,))+x,+h(x, +f(x))J lL 1(~2)J| leF X, J
_Fx1+f(x2)-f(x2)1| lFx 1
I X, | LXJ
[1¢) 1 AT =h() 16)7 Ty, T
e ol ([T )
() 1 AT =he) 161 T, fo)+x, 1)
lLf() 1( )J ‘L 1) J‘ |L2€ x1+h(f(x1)+x2)J )
PR e ) x| 20 T ]
|-G 16D || f(x,)+ X, I I RS I P (CH
SN
L)+, -F00) | [ % |
Hence,
TG L =fe)T (T L) 17,1
BT, =] 1 | |_ [°] [
| OV I U CPR I CVN I I
[1¢) 1 (T=h() 16T 1T
(BT, =] Mt
L()l()JLl() 1]
. L [oeiy)  -sig, )1 . LT oeag, )’ -s1(, )1
3B'l'2 =1BT2 O‘ ............................................ BT = BT O| .............................................

|56 | el )J R A O e X )J
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Note that both the direct and inverse transforms involve only the 2 arbitrary functions f,h , and not
their inverses.

Let
(i) o7 [1¢,) ()] I 1) () 1(,)]T
. L i (f) - | ............... ............... | o L , (f) _ | : | . L , (f) - | : | o L , (f) - | | (15)
| TG 16 | | 102 | | 1C2) 10 | |10 |
Obviously,

BT, (f.h)=,L,(h) 0(1Lz(f) o)’ ,BT,(f.h)=,L,(h) O(aLz(f) O)
Using 4 elementary basis transforms (15) we can construct
1) 4 different basis transforms with two nonlinear functions

q;=38,0,=3 q;=8,0,=3

{(q,qo)BTz(fql'fqo)} 0 :{qle(fq,)o(qoLz(fqo)o)}

)
q;=0.q,= a;=0,0,=0

2) 4° different basis transforms with two nonlinear functions
9,=3,0,=3,q,=3 9,=3,9,=3,9,=3
{ [CICACED) B T2 (fqz 'fq1 7f% )}

(L (L) (L))

and so on. We can continue this process until the m -th step on which it will be built 4™ different basis
transforms:

q,=0,0,=0,9,=0 q,=0,0,=0,9,=0

BT, (f, o f)) 7 =

{ (PSR LTS

= { q, LZ(fqz )° (o ( a, Lz(fql) ° ( q Lz(fqo) O)))} h
which involve m arbitrary functions.

[cosg sing | . . .
Let BT,(pif, ... fo.f, )= CBT,(f, ..., f..f, ). Using such basis non-linear
m-1 1 0 Lsin ¢ 7COS(pJ m-1 1 0

transforms, we can construct FNLT of the following generalized form:

L [|’ s 1 \
FNLT((pf,(pf """ gog;flo’fzo """ fg):PDUIOHU@rBTZD('wp;rfqp """ rfqp’rfqp)lorPJ:
’ ’ =1\ Le-o s
‘f BT (0" L) \I (16)
BT (e A SO T B
= Poul OH ‘ = ° P |
-1 | |
L BT, (o L) J
Each fast non-linear transform FNLT (¢.,0,.,..., ¢§w;f1°,fz° ..... fs' )P, contains L(s +1)=LN /2 basis
r=L,p=S
transforms "BT,) ("o ®;"f” ..., “t7.7¢7). It depends on P, = LN /2 ¢ -parameters {'p°} " and
m-1 1 4 r=1,p=0
- . . v ‘ ‘ r=L.p=s
on P, =q, LN /2 non-linear basis functions {"f’ ..., o fo
m-1 1 o) ro1p=0

5. The intelligent secrete nonlinear OFDM-TCS

Most of the data transmission systems nowadays use orthogonal frequency division multiplexing
telecommunication system (OFDM-TCS) based on the discrete Fourier transform (DFT). Some
versions of it is: digital audio broadcast (DAB), digital video broadcast (DVB), and wireless local area
network (WLAN), standards such as IEEE802.11g and long term evolution (LTE and its extension
LTE- Advanced, Wi-Fi (IEEE 802.11), worldwide interoperability for microwave ACCESS (WiMAX
IEEE 802.16) or ADSL [48]. The concept of using parallel data broadcast by means of frequency
division multiplexing (FDM) was printed in mid 60s [49].
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The conventional OFDM is a multi-carrier modulation technique that is basic technology having
high-speed transmission capability with bandwidth efficiency and robust performance in multipath
fading environments. OFDM divides the available spectrum into a number of parallel orthogonal sub-
carriers and each sub-carrier is then modulated by a low rate data stream at different carrier frequency.
In OFDM system, the modulation and demodulation can be applied easily by means of inverse and
direct discrete Fourier transforms (DFT). The conventional OFDM will be denoted by the symbol
F,-oFbm.Conventional OFDM-TCS makes use of signal orthogonality of the multiple sub-carriers

e 2™ (discrete complex exponential harmonics). All sub-carriers {subc, (n)}" . = {e’***™1" " form
= k=0

matrix of discrete orthogonal Fourier transform F = [subc, (n)] = [el2mn ]N'l . At the time, the

idea of using the fast algorithm of different orthogonal transforms u, = [subc, (n)]:“;io for a software-
based implementation of the OFDM’s modulator and demodulator, transformed this technique from an
attractive. OFDM-TCS, based on arbitrary orthogonal (unitary) transform u, will be denoted as
u,-oFbm.The idea which links £ -orpm and u -orpbm is that, in the same manner that the

complex exponentials {e’**""" }Nf: are orthogonal to each-other, the members of a family of u, -sub-
carriers {subc, (n)}kN:’O1 (rows of the matrix u, ) will satisfy the same property.

The u,-orbwm reshapes the multi-carrier transmission concept, by using carriers {subc, (n)}

N —
k=0

instead of OFDM’s complex exponentials {e”“"’”}N*:. There are a number of candidates for

orthogonal function sets used in the OFDM-TCS: diécrete wavelet sub-carriers [50]-[51], Golay
complementary sequences [52]-[56], rectangle pulses [50], Walsh functions [57]-[59], pseudo random
sequences [60], manyparameter sub-carriers [61-66] based on many-parameter transforms

Uy (o, 0,.00,) .

Intelligent secrete OFDM TCS can be described as a dynamically reconfigurable TCS that can
adaptively regulate its internal parameters as a response to changes in the surrounding environment.
One of the most important capacities of Intelligent OFDM systems is their capability to optimally
adapt their operating parameters based on observations and previous experiences. There are several
possible approaches towards realizing such intelligent capabilities. In this work, we aim to investigate
the superiority and practicability of FNLTs from the physical layer security (PHY-LS) perspective.

In this work, we propose a simple and effective anti-eavesdropping and anti-jamming Intelligent
OFDM system, based on many-parameter fast nonlinear transforms. In our Intelligent-OFDM-TCS we

use FNLT(¢,,0,.....0, if,.f,,....f, ) instead of DFT F .
Each FNLT depends on p of independent Jacobi angles {(pl,(pz ..... ¢P'} and on p, of

independent nonlinear functions {fl,fz ..... fo } , Which could be changed in dependently of one another.
When  parameters and non-linear  functions are changed, non-linear transform
FNLT (@, 0,0, if f,, .. f,) is changed too. The vector of parameters
(0,000, ) € Tor, [0,27] = [0,27]" belongs to the P,-D torus. Intelligent OFDM system uses some

concrete values of the parameters ¢, = ¢ ¢, = ¢;.....0, = ¢, and some concrete the set of nonlinear

basis functions {f1°,f2° ..... £ } ie., it uses a concrete realization of fast non-linear transform

0

FNLT (0, 0,00 if, f,) . The vector (o] .¢;....0;) and theset {f’.f],...f] | forms of the set

of all bunches of ¢ - and f -keys (see figure 7), whose knowing is necessary for entering into the
OFDM TCS with the aim of intercepting the confidential information.
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Quantity of parameters and basis non-linear function can achieve the values » - ¢, 010 000 . So,
searching the bunch of ¢ - and ¢ -keys by scanning with the aim of finding the working parameters
(¢..0;....0;) and (628082 ) is very difficult problem for the enemy cyber-means. But if,

nevertheless, this key were found by the enemy in an cyber-attack, then the system could change
values of the working parameters (¢;,¢,....¢,) and (10,6000 for rejecting the enemy attack. As a

------

result, the system will counteract against the enemy radio-electronic attacks.

f; 2 f}?,-1 fa
Figure 7. Bunch of » - and t -keys.

6. Conclusions

In this work we have presented a unified approach to non-linear transforms having a fast algorithm.
The use of recursive rules to describe non-linear transforms allows a systematic way to view known
orthogonal, unitary and non-linear transforms, to generate new transforms. The framework provided
can be used in several other studies and applications of non-linear transforms. We believe that the
proposed nonlinear transforms might be useful in some wired and wireless communication
applications

7. Acknowledgments

This work was supported by the RFBR grant 19-29-09022\19 and by the Ural State Forest
Engineering’s Center of Excellence in «Quantum and Classical Information Technologies for Remote
Sensing Systems.

8. References

[1] Rugh, W.J. Nonlinear system theory: the Volterra — Wiener approach // The Johns Hopkins
University Press,1981. — 330 p.

[2] Schetzen, M. The Volterra und Winer theorems of nonlinear systems —New York: Wiley, 1980.

[3] Kim, K.I. A digital method of modeling quadratically non-linear systems with a general random
input / E.J. Powers // IEEE Trans. Acoust. Speech Signal Process. — 1988. — Vol. 36(11). — P.
1758-17609.

[4] Schetzen, M. Non-linear system modeling based on the Wiener theory // Proc. IEEE. —1981. —
Vol. 69(12). — P. 1557-1573.

[5] Pages-Zamora, A. The K-filter: A new architecture to model and design non-linear systems
from Kolmogorov's theorem / M.A. Lagunas, M. Nahjar, A. Pehrezneira // Signal Processing. —
1995. — Vol. 44(3). —P. 249-267.

[6] Ostheimer, E. Systematic approach to nonlinear filtering associated with aggregation operators.
Part 1. SISO-filters // Procedia Engineering. —2017. — Vol. 201. — P. 372-384.

[7] Labunets, V. Systematic approach to nonlinear filtering associated with aggregation operators.
Part 2. Frechet MIMO-filters / E. Ostheimer // Procedia Engineering. — 2017. — Vol. 201.-P.
385-397.

[8] Ostheimer, E. Fréchet filters for color and hyperspectral images filtering/ V. Labunets, D.
Komarov, T. Fedorova // Communications in Computer and Information Science. — 2015. — Vol.
542. —P. 57-70.

VI MexaynapojHast KOHGEpeHIHs 1 MOJoAEKHas mKona « MHpopMannonHble TexHonmoruu u nanorexuonorum» (MTHT-2020) 616


https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57196469871&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=6701610877&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57196469871&zone=
https://elibrary.ru/item.asp?id=26927856
https://elibrary.ru/contents.asp?issueid=1621228

Cexkuusi: O6paboTKa H300paXKeHUIA 1 AUCTAHIIMOHHOE 30HAUPOBaHKE 3eMIIN
Fast invertible nonlinear transforms for intelligent OFDM TCS

9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

Ostheimer, E. Families of Heron digital filters for images filtering / V. Labunets, F. Myasnikov
/I CEUR Workshop Proceedings. — 2015. — Vol. 1452. — P. 56-63.

Ostheimer, E. New bi-, tri-, and four-lateral filters for color and hyperspectral images filtering /
V. Labunets, A. Kurganski, D. Komarov, I. Artemov // Communications in Computer and
Information Science. — 2015. — Vol. 542. — P. 102-113.

Labunets, V.G. Filters based on aggregation operators. Part 1. Aggregation operators //
International Crimean Conference Microwave and Telecommunication Technology Conference
Proceedings—CriMiCo, 2014. — P. 1239-1240.

Labunets, V.G. Filters based on aggregation operators. Part 2. The Kolmogorov filters / D.N.
Gainanov, E. Ostheimer // 24th International Crimean Conference Microwave and Telecom-
munication Technology Conference Proceedings, 2014.— P. 1241-1242.

Labunets, V.G. Filters based on aggregation operators. Part 3. The Heron filters / D.N.
Gainanov, A.D. Tarasov, E. Ostheimer // 24th International Crimean Conference Microwave
and Telecommunication Technology Conference Proceedings, 2014. —P. 1243-1244.

Labunets, V.G. Filters based on aggregation operators. Part 4. Generalized vector median filters
/ D.N. Gainanov, R.A. Arslanova, E. Ostheimer // 24th International Crimean Conference
Micro-wave and Telecommunication Technology Conference Proceedings. — 2014. — P. 1245-
1246.

Biglieri, S. Analysis and compensation of non-linearities in digital transmission systems / S.
Barberis, M. Catena // IEEE J. Sel. Areas Commun. —1988. — Vol. 6(1). — P. 42-51.

Mulgrew, B. Applying radial basis functions // Signal Process. Mag. — 1966. — Vol. 13(2). — P.
50-65.

Wahba, G. Multivariate function and operator estimation, based on smoothing splines and
reproducing kernels // Proc. Non-linear Modeling and Forecasting. In: Studies in the Sciences of
Complexity — MA: Addison-Wesley, 1992. — Vol. XII. —P. 95-112.

Kolmogorov, A.N. On the representation of continuous functions of several variables by
superposition of continuous functions of one variable and addition // Dokl. Akad. Nauk SSSR. —
1957. —Vol. 114. —P. 369-373.

Arnol’d, V.I. On the representation of continuous functions depending on three variables by
superpositions of continuous function depending on two variables // Dokl. Acad. Nauk SSSR. —
1957. —Vol. 114. —P. 679-681.

Gashkov, S.B. On the circuit and formula complexity of Boolean functions // Prabl. Kibernet. —
1980. — Vol. 37. — P. 57-118.

Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence theorem // IEEE
International Conference on Neural Networks. — San Diego: SOS Printing. — 1987. —Vol. 2. - P.
11-14.

Labunets, V. New networks for nonlinear, linear and orthogonal transforms / E. Labunets // V-
th Int. Workshop on Parallel Processing by Cellular Automata and Arrays (PARCELLA) —
Berlin, 1990. — P. 239-244.

Cooley, J.W. An algorithm for the machine calculation of complex Fourier series / JW. Tukey //
Math. Comp. — 1965. — Vol. 19(4). — P. 297-301.

Whetchel, J.E. The fast Fourier—Hadamard transform and its use in signal representation and
classification / D.F. Guinn // IEEE Transactions on Aerospace and Electronic Systems. — 1968. —
P. 561-573.

Beauchamp G. Walsh Functions and Their Applications — London, New York: Academic, 1975.
— 248 p.

Bracewell, R.N. Fast Hatrley transform. — New York; Oxford University Press, 1986. — 228 p.
Hartley, R.V.L. A more symmetrical Fourier analysis applied to transmission problems // Proc.
of the IRE. — 1942. —Vol.30. — P. 142-150.

Fino, B.J. Relations between Haar and Walsh-Hadamard transforms // Proc. IEEE (Lett.). —
1972. —Vol. 60. — P. 647-648.

Labunets, V.G. Generalized Haar transforms/ Multi—valued elements, structures and systems //
Kiev: Institute of Cybernetics of Ukraian Academy of Sciences Press, 1983. — P. 46-58.

VI MexaynapojHast KOHGEpeHIHs 1 MOJoAEKHas mKona « MHpopMannonHble TexHonmoruu u nanorexuonorum» (MTHT-2020) 617


https://elibrary.ru/item.asp?id=26924758
https://elibrary.ru/item.asp?id=26795378
https://elibrary.ru/item.asp?id=26927908
https://elibrary.ru/contents.asp?issueid=1621228
https://elibrary.ru/contents.asp?issueid=1621228
https://elibrary.ru/item.asp?id=24012416
https://elibrary.ru/item.asp?id=24012212
https://elibrary.ru/item.asp?id=24012553
https://elibrary.ru/item.asp?id=24012212
https://elibrary.ru/item.asp?id=24012212
https://elibrary.ru/item.asp?id=24012408
https://elibrary.ru/item.asp?id=24012212
https://elibrary.ru/item.asp?id=24012212
https://elibrary.ru/item.asp?id=24012500
https://elibrary.ru/item.asp?id=24012212
https://elibrary.ru/item.asp?id=24012212

Cexkuusi: O6paboTKa H300paXKeHUIA 1 AUCTAHIIMOHHOE 30HAUPOBaHKE 3eMIIN
Fast invertible nonlinear transforms for intelligent OFDM TCS

[30]
[31]
[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Andrews, H.C. Computer techniques in image processing — New York: Academic Press, 1970. —
244 p.

Andrews, H.C. Kronecker matrices, computer implementation and generalized spectra / J. Kane
/1J. Assoc. Comput. Math. —1970. — Vol. 17. — P. 260-268.

Andrews, H.C. A generalized technique for spectral analysis / K.L. Caspari // IEEE Trans.
Computers. —1970. — Vol. C-19. — P. 16-25.

Ahmed, N. A generalized discrete transform / K.R. Rao, R.B. Schultz // Proc. IEEE. — 1971, —
Vol. 59. — P. 1360-1362.

Ahmed, N. Orthogonal Transforms for Digital Signal Processing / N. Ahmed, K.R. Rao —
Heidelberg, Berlin, New York: Springer—Verlag, 1975. — 248 p.

Labunets, V.G. Fast multiparameter transforms //Proceedings of Radioelectronics. — 1985. —
Vol. 8. — P. 89-109.

Labunets, V.G. Unified approach to fast algorithms of unitary transforms // Multivalued
elements, structures and systems — Kiev: Institute of Cybernetics of Ukraian Academy of
Sciences Press, 1983. — P. 58-70.

Labunets, V.G. Multi-parameter Golay 2—complementary sequences and transforms / V.P.
Chasovskikh, E. Ostheimer // Proceedings of the 4™ International Youth Conference on
Information technologies and nanotechnologies — Samara: New Technics, 2018. — P. 1013-
1022.

Labunets, V.G. Multi-parameter Golay m-complementary sequences and transforms / V.P.
Chasovskikh, E. Ostheimer // Proceedings of the 4™ International Youth Conference on
Information technologies and nanotechnologies.—Samara: New Technics, 2018. — P. 1005-1012.
Labunets, V.G. Many-parametric cyclic wavelet transforms. Part 1. The first and second
canonical forms / K. Egiazarian, J. Astola, E. Ostheimer // Proceedings of the International
TICSP Workshop on Spectral Methods and Multirate Signal Processing —Tampere, Finland:
Tampere University Technology, 2007. —P. 111-120.

Labunets, V.G. Many-parametric cyclic wavelet transforms. Part 2. The third and fourth
canonical forms / K. Egiazarian, J. Astola, E. Ostheimer // Proceedings of the International
TICSP Workshop on Spectral Methods and Multirate Signal Processing — Tampere, Finland:
Tampere University Technology, 2007. — P. 121-132.

Labunets, V.G. Fast multi-parametric wavelet transforms and packets for image processing /
D.E. Komarov, E. Ostheimer // CEUR Workshop Proceedings. — 2016. — Vol. 1710. — P.134-
145.

Labunets, V. Multi-parametric wavelet transforms and packets / D.N. Gainanov, D.A. Berenov
/1 Proceedings of the 11" International Conference on Pattern Recognition and Image Analysis:
New Information Technologies — Samara: New Technics, 2013. —Vol. 1. — P. 52-56.

Labunets, V. The best multi-parameter wavelet transforms / V. Labunets, D. Gainanov, A.
Berenov // Proceedings of the 11" International Conference on Pattern Recognition and Image
Analysis: New Information Technologies — Samara: New Technics, 2013. — Vol. 1. — P. 56-60.
Labunets, V.G. Many-parameter Golay m-complementary sequences and transforms // V.P.
Chasovskikh, Ju. G. Smetanin, E. Ostheimer // Computer Optics. — 2018. — Vol. 42(6). — P.
1074-1083.

Demuth, G.L. Algorithms for defining mixed radix FFT flow graphs // IEEE Trans. Acoustics,
Speech, and Signal Processing. — 1989. — Vol. 37(9). — P. 1349-1358.

Labunets, V.G. Unified approach to fast transform algorithm // Orthogonal methods in signal
processing and system analysis — Sverdlovsk: Urals Polytechnical Institute Press, 1980. — P. 4-
14.

Labunets, V.G. Unified approach to fast algorithms of unitary transforms // Multi-valued
elements, structures and systems — Kiev: Institute of Cybernetics of Ukrainian Academy of
Sciences Press, 1983. — P. 58-70.

Baig, S. Performance comparison of DFT, discrete wavelet packet and wavelet transforms, in an
OFDM transceiver for multipath fading channel / M. Fazal-ur-Rehman, M.J. Mughal // IEEE
Communication Magazine, 2004. — P. 1-6.

VI MexaynapojHast KOHGEpeHIHs 1 MOJoAEKHas mKona « MHpopMannonHble TexHonmoruu u nanorexuonorum» (MTHT-2020) 618



Cexkuusi: O6paboTKa H300paXKeHUIA 1 AUCTAHIIMOHHOE 30HAUPOBaHKE 3eMIIN
Fast invertible nonlinear transforms for intelligent OFDM TCS

[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Chang, R.W. Synthesis of band limited orthogonal signals for multichannel data transmission //
Bell Syst. Tech. J. —-1966. — Vol. 45. —P. 1775-1796.

Wornell, G. Emerging applications of multirate signal processing and wavelets in digital
communications // Proc. IEEE. —1966. — Vol. 84. — P. 586-603.

Sandberg, S.D. Overlapped discrete multitone modulation for high-speed copper wire commu-
nications / M.A. Tzannes // IEEE Journal on Sel. Areas in Commun. — 1985. — Vol. 13. — P.
1571-1585.

Halford, K. Complementary code keying for rake-based indoor wireless communication / S.
Halford, M. Webster, C. Andren // Proceedings of IEEE International Symposium on Circuits
and Systems, 1999. — P. 427-430.

Golay, M.J.E. Multisplit spectroscopy // J. Opt. Soc. Amer. —1949. — Vol. 39. — P. 437-444.
Golay, M.J.E. Complementary series // IEEE Trans. Inform. Theory. — 1961. — Vol. 7. — P. 82-
87.

Davis, J.A. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-
Muller codes/ J. Jedwab // IEEE Trans. Inform. Theory. —1999. — Vol. 45. — P. 2397-2417.
Fiedler, F. A framework for the construction of Golay sequences / J. Jedwab, M.G. Parker //
IEEE Trans. Inform. Theory. — 2008. — Vol. 54. —P. 3114-3129.

Michailow, N. WHT — GFDM for the next generation of wireless networks / L. Mendes, M.
Matthe, I. Festag, A. Fettweis, G. Robust // IEEE Communications Letters. — 2015. — Vol. 19. —
P. 106-1009.

Xiao, J. Hadamard transform combined with companding transform technique for PAPR
reduction in an optical direct-detection OFDM system / J. Yu, X. Li, Q. Tang, H. Chen, F. Li,
Z.Cao, L. Chen L // IEEE J. Opt. Commun. Netw. — 2012. — Vol. 4(10). — P. 709-714.

Wang, S. A Walsh-Hadamard coded spectral efficient full frequency diversity OFDM system /
S. Zhu, G. Zhang // IEEE Trans. Commun. — 2012. — Vol. 58(1). — P. 28-34.

Wilkinson, T.A. Minimization of the peak to mean envelope power ratio of multicarrier
transmission schemes by block coding / A.E. Jones // Proceedings of the IEEE 45th Vehicular
Technology Conf. — 1995. — P. 825-829.

Labunets, V.G. Intelligent OFDM telecommunication system. Part 1. Model of complex and
quaternion systems / E. Ostheimer // Journal of Physics: Conference Series. —2019. — Vol.1368.
-P.1-11.

Labunets, V.G. Intelligent OFDM telecommunication system. Part 2. Examples of complex and
quaternion many-parameter transforms / E. Ostheimer // Journal of Physics: Conference Series.
—2019. —Vol. 1368. — P. 1-14.

Labunets, V.G. Intelligent OFDM telecommunication system. Part 3.Anti-eavesdropping and
anti-jamming properties of system, based on many-parameter wavelet and Golay transforms /
D.E. Komarov, V.P. Chasovskikh, Ju. G. Smetanin, E. Ostheimer // Journal of Physics:
Conference Series. —2019. — Vol. 1368. — P. 1-14.

Labunets, V.G. Intelligent OFDM telecommunication system. Part 4.Anti-eavesdropping and
anti-jamming properties of the system, based on many-parameter and fractional Fourier
transforms/ S.A. Martyugin, V.P. Chasovskikh, Ju. G. Smetanin, E. Ostheimer // Journal of
Physics: Conference Series. — 2019. — Vol. 1368. — P. 1-15.

Labunets, V.G. Many-parameter quaternion Fourier transforms for intelligent OFDM
telecommunication system /E. Ostheimer // Advances in Artificial Systems for Medicine and
Education-11l. Part of the Advances in Intelligent Systems and Computing — Switzeland:
Springer Nature, 2020. — Vol. 1126. —P. 76-92.

Labunets, V.G. Intelligent OFDM telecommunication systems based on many-parameter
complex or quaternion Fourier transforms / E. Ostheimer // Advances in Intelligent Systems,
Computer Science and Digital Economics. Part of the Advances in Intelligent Systems and
Computing — Switzeland: Springer Nature. — 2020. — Vol. 1127. — P. 129-144.

VI MexaynapojHast KOHGEpeHIHs 1 MOJoAEKHas mKona « MHpopMannonHble TexHonmoruu u nanorexuonorum» (MTHT-2020) 619



